## Kinetic Molecular Theory

1. List the five assumptions:

| Assumption | Description | Extra Info |
| :---: | :--- | :--- |
| $\mathbf{1}$ |  | Basically means: the particles <br> themselves have _- <br> compared to the space between <br> them! |
| $\mathbf{2}$ |  | Define elastic collision: |
| $\mathbf{3}$ |  | Gases are ALWAYS moving! |
| $\mathbf{4}$ |  | The _-_ the behave like: <br> the the particles move. <br> $\mathbf{5}$ |

2. Define Ideal Gas:
3. Contrast real and ideal gases:

| Ideal Gases |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

4. Properties of Ideal Gases (what are they AND relate to the KMT)
a. Expansion:
b. Density:
c. Fluidity
d. Compressibility:
e. Diffusion:
f. Effusion:

## Pressure

1. Define Pressure:
2. How do we measure pressure? $\qquad$
3. Formula for pressure
4. Units of Pressure
5. Conversions:
6. Let's Try it!
a. 4 atm to mmHg
b. 567 mmHg to atm
c. 200.5 kPa to atm
d. 220.3 kPa to torr

## Vapor Pressure

1. Define vapor pressure:
2. What happens to vapor pressure as temperature increases? Why?
3. When does liquid boil?
4. Define each:
a. Volatile
b. Nonvolatile
c. Boiling/vaporization
d. Evaporation
5. Vapor Pressure Curves
a. Identify the normal boiling point for each substance
b. Determine which substance is most and least volatile
c. Determine which substance has the weakest forces of attraction and which has the strongest


## Gas Laws

1. Define gas laws:
2. The behavior of gases are based on 4 factors:
a. Pressure:
b. Volume:
c. Number of Particles:
d. Temperature
3. Standard temperature and pressure (STP):
4. Absolute zero:
5. Avogadro's Law:
a. At constant $\qquad$ and $\qquad$ equal $\qquad$ of gases contain the same number of $\qquad$ volume $\qquad$ .
b. As amount of gas
c. Relationship?
Inverse or Direct
d. Formula:
e. Try it! A 12.2 L sample of gas at constant pressure and temperature contains 0.5 mol oxygen gas. If all of the oxygen gas is converted to ozone, what would be the new volume?

$$
3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})
$$

## 6. Boyle's Law:

a. At constant $\qquad$ , the $\qquad$ of a gas varies inversely with the
b. As volume $\qquad$ pressure $\qquad$ .
c. Formula:
d. A sample of gas occupies 500. mL at 1.0 atm of pressure at constant temperature. If the pressure decreases to 0.50 atm, what will be the final volume?
e. A sample of Neon gas occupies 0.220L at 0.860atm. What will be its volume at 29.2 kPa ?
7. Charles' Law:
a. At a constant $\qquad$ the temperature of a gas varies directly with the
b. As volume $\qquad$ , temperature $\qquad$ .
c. YOU MUST USE $\qquad$ TEMPERATURE!
d. Formula:
e. Try it! At constant pressure, 2.75 L of a gas is at $20.0^{\circ} \mathrm{C}$. If the temperature changes so that the gas occupies 1.87 L , what is the final temperature?
f. A gas at $40.0^{\circ} \mathrm{C}$ occupies a volume of 2.32 L . If the temperature is increased to $75.0^{\circ} \mathrm{C}$, what will the new volume be if the pressure is constant?

## 8. Gay-Lussac's Law

a. At constant $\qquad$ the $\qquad$ of a gas varies directly with the
b. As temperature $\qquad$ , pressure $\qquad$ .
c. Formula:
d. Try it! A gas at 1.8 atm and $23.0^{\circ} \mathrm{C}$ increases to 2.5 atm . Assuming the volume does not change, what is the new temperature?
e. If the pressure in a car tire is 1.88 atm at $25^{\circ} \mathrm{C}$, what will be the new pressure if the temperature warms to $37^{\circ} \mathrm{C}$ ?

## 9. Combined Gas Law

a. Formula:
b. Try it! A gas at 110 kPa and $30.0^{\circ} \mathrm{C}$ fills a flexible container with an initial volume of 2.00 L . If the temperature is raised to $80.0^{\circ} \mathrm{C}$ and the pressure is increased to 440 kPa , what is the new volume?
c. A gas at 0.974 atm and $25.0^{\circ} \mathrm{C}$ occupies a volume of 27.5 mL . What volume will the gas occupy at STP conditions?

## 10. Ideal Gas Law

a. Formula AND what each letter stands for:
b. Try it! What is the pressure in atm of a 0.108 mol sample of the gas at temperature $20.0^{\circ} \mathrm{C}$ if its volume is 0.505L?

## 11. Modifying the Ideal Gas Law

a. Modified formula for molar mass (M):
b. Modified formula for density (D):
c. Let's try it! A 273 mL container contains 0.750 g of a gas at 97.2 torr and $61.0^{\circ} \mathrm{C}$. What is the molar mass of the gas?
d. What is the density of a gas with a molar mass of $58.0 \mathrm{~g} / \mathrm{mol}$ at $25.0^{\circ} \mathrm{C}$ and 102 kPa ?
12. Dalton's Law of Partial Pressure
a. Define partial pressure:
b. The $\qquad$ of a mixture of gases is equal to the $\qquad$ of the partial pressures of each component in the mixture.
c. Formula:
d. Try it! If 3 moles of carbon dioxide has a partial pressure of 4.5 atm and the total pressure is 8.7 atm, what is the partial pressure of the other gases?
e. Collecting gas over water

f. Formula:
g. Try it! Hydrogen gas is collected over water at $25^{\circ} \mathrm{C}$. The atmospheric pressure is 765 mm Hg . The water vapor pressure at $25^{\circ} \mathrm{C}$ is 23.8 mm Hg . What is the pressure of the gas?
13. Graham's Law of Effusion or Diffusion
a. The rate of diffusion (or effusion) is $\qquad$ related to the square root of its $\qquad$ .
b. The $\qquad$ the mass, the $\qquad$ the gas diffuses or effuses.
c. Formula:
d. Try it! Determine the relative rate of diffusion for krypton and bromine.
e. A molecule of oxygen gas has an average speed of $12.3 \mathrm{~m} / \mathrm{s}$ at a given temp and pressure. What is the average speed of hydrogen molecules at the same conditions?

