Name_			Date							
Molar Mass										
Directions: Determine the molar mass (the mass of one mole) of each compound below										
1.	КСІ									
2.	Ca(NO ₃) ₂									
3.	H ₂ CO ₃									
4.	HNO ₃									
5.	Na ₂ SO ₄									
6.	$C_6H_8O_6$									
7.	Mg ₃ (PO ₄) ₂									
8.	CuSO₄ ●5H₂O									

Date_____

Percent Composition

Directions: Determine the percent composition by mass of each of the following compounds.

- 1. $C_6H_{12}O_6$
 - C = _____ H = _____ O = _____
- 2. NH₄NO₃
 - N = _____ H = _____ O = _____
- 3. Mg(NO₃)₂

Mg	=		
N =			
0 =		 	

4. KMnO₄

K =	
Mn =	
O =	

5. $Pb(CH_3COO)_2$

Pb =	=		
C =			_
H =			
O =		 	
H = O =		 	_

Name_____ Date Mole Conversions **Directions:** Determine the number of **moles** in each of the quantities below. 1. 130 g of H₂SO₄ 2. 87 g of KCl **Directions**: Determine the number of **grams** in each of the quantities below. 3. 3.5 moles of NaCl 4. 2.80 moles of KMnO₄ Directions: Determine the number of molecules in the quantities below. 5. 2.2 moles 6. 0.17 moles **Directions:** Solve the following problems. 7. How many grams are there in 1.2×10^{26} molecules of CO₂? 8. What volume would the CO_2 in Problem 7 occupy at STP? 9. A sample of NH₃ gas occupies 82.0 liters at STP. How many molecules is this? 10. What is the mass of the sample of NH_3 in Problem 9? 11. How many moles are there in 1.3×10^{22} molecules of NO₂? How many atoms?

Date

Empirical Formula

Directions: Determine the empirical formula for each compound below.

- 1. 74.51% Pb, 25.49% Cl
- 2. 52.55% Ba, 10.72% N, 36.73% O
- 3. 32.4% sodium, 22.5% sulfur, 45.1% oxygen
- 4. 29.15% N, 8.41% H, 12.50% C, 49.94% O
- 5. 10.52 g Ni, 4.38 g C, and 5.10 g N
- 6. Glycerol is a thick, sweet liquid obtained as a byproduct of the manufacture of soap. Its percent composition is 39.12% carbon, 8.75% hydrogen, and 52.12% oxygen. What is its empirical formula?

7. Analysis of a compound containing chlorine and lead reveals that the compound is 59.37% lead. What is the empirical formula of this compound?

4

Date

Molecular Formula

Directions: Determine the molecular formula for each compound below.

- 1. empirical formula CH, molar mass 78 g/mol
- 2. empirical formula NH₂, molar mass 32.06 g/mol
- 3. empirical formula NO₂, molar mass 92 g/mol
- 4. empirical formula OCNCl, molar mass 232.41 g/mol
- 5. A compound with an empirical formula of CH_2O has a molar mass of 60. g/mol. What is its molecular formula?
- Determine the molecular formula for ibuprofen, a common headache remedy. Analysis of ibuprofen yields a molar mass of 206 g/mol and a percent composition of 75.7% C, 8.80% H and 15.5% O.

Date_____

Stoichiomety Practice

Mole-to-Mole Conversions

Directions: Solve the following problems.

1. If the following equation occurs:

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_2$$

- a. How many moles of oxygen are required to react completely with 3.5 mol C₈H₁₈?
- b. How many moles of CO₂ will be produced if the conditions in Question 1a are met?
- 2. One of the main components of pearls is calcium carbonate. If pearls are put in acidic solution, they dissolve.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

- a. How many moles of CaCO₃ can be dissolved in 0.0350 mol HCl?
- b. How many moles of CaCl₂ will be produced if the conditions in Question 2a are met?

Date

Mass-to-Mass Conversions

Directions: Solve the following problems.

1. The fuel methanol (CH₃OH) is made by the reaction of carbon monoxide and hydrogen.

 $CO + 2H_2 \rightarrow CH_3OH$

- a. How many grams of hydrogen are needed to produce 55.0 grams of methanol?
- b. How many grams of methanol will be produced if 149 grams of carbon monoxide is used (hydrogen is in excess).
- 2. If the following equation occurs:

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$$

- a. What mass of oxygen is required to completely react with 4 mol C₈H₁₈?
- b. What is the mass of CO₂ produced if the conditions in Question 4a are met?
- 3. Chloroform (CHCl₃), an important solvent, is produced by a reaction between methane (CH₄) and chlorine. The other product is hydrochloric acid (HCl).

$$CH_4 + 3Cl_2 \rightarrow CHCl_3 + 3HCl$$

- a. How many grams of CH_4 are needed to produce 60.0 grams of $CHCl_3$?
- b. How many grams of HCl will be produced if the conditions in Question 5b are met?

Name

Date

More Stoichiometry Practice

Directions: Solve the following problems.

- Car batteries use solid lead and lead(IV) oxide with sulfuric acid solution produce an electric current. The products of this reaction are lead(II) sulfate in solution and water.
 - a. Write the balanced chemical equation for this reaction.
 - b. Determine the mass of lead(II) sulfate produced when 24.0g lead reacts with an excess of lead(IV) oxide and sulfuric acid.
- 2. Use this equation to solve this problem:

 $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$

If 6.30 mol calcium carbide (CaC_2) reacts with an excess of water, how many moles of acetylene (C_2H_2) will be produced?

- 3. A car's catalytic converter combines carbon monoxide with oxygen to form carbon dioxide gas.
 - a. Write the balanced equation for this reaction.
 - b. What volume of oxygen is required to that 650 mL of carbon monoxide gas is completely converted to carbon monoxide?
 - c. How many liters of carbon dioxide are produced if the catalytic converter processes 7.25 L of carbon monoxide?
- 4. Why is a balanced chemical equation required to solve stoichiometry problems?