\qquad

Molar Mass

Directions: Determine the molar mass (the mass of one mole) of each compound below

1. KCl
2. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
3. $\mathrm{H}_{2} \mathrm{CO}_{3}$ \qquad
4. HNO_{3}
5. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
6. $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
7. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

8. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
\qquad

Percent Composition

Directions: Determine the percent composition by mass of each of the following compounds.

1. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\begin{aligned}
& \mathrm{C}= \\
& \mathrm{H}=\square \\
& \mathrm{O}=\square
\end{aligned}
$$

2. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\mathrm{N}=$ \qquad
H = \qquad
$\mathrm{O}=$ \qquad
3. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Mg}=$ \qquad
$\mathrm{N}=$ \qquad
$\mathrm{O}=$ \qquad
4. KMnO_{4}
$\mathrm{K}=$ \qquad
$\mathrm{Mn}=$ \qquad
$\mathrm{O}=$ \qquad
5. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
$\mathrm{Pb}=$ \qquad
C = \qquad
H = \qquad
$\mathrm{O}=$ \qquad
\qquad Date \qquad

Mole Conversions

Directions: Determine the number of moles in each of the quantities below.

1. $130 \mathrm{~g} \mathrm{of} \mathrm{H}_{2} \mathrm{SO}_{4}$
2. 87 g of KCl

Directions: Determine the number of grams in each of the quantities below.
3. 3.5 moles of NaCl
4. 2.80 moles of KMnO_{4}

Directions: Determine the number of molecules in the quantities below.
5. 2.2 moles
6. $\quad 0.17$ moles

Directions: Solve the following problems.
7. How many grams are there in 1.2×10^{26} molecules of CO_{2} ?
8. What volume would the CO_{2} in Problem 7 occupy at STP?
9. A sample of NH_{3} gas occupies 82.0 liters at STP. \qquad How many molecules is this?
10. What is the mass of the sample of NH_{3} in Problem 9?
11. How many moles are there in 1.3×10^{22} molecules of NO_{2} ? How many atoms?
\qquad Date \qquad

Empirical Formula

Directions: Determine the empirical formula for each compound below.

1. $74.51 \% \mathrm{~Pb}, 25.49 \% \mathrm{Cl}$
2. $52.55 \% \mathrm{Ba}, 10.72 \% \mathrm{~N}, 36.73 \% \mathrm{O}$
3. 32.4% sodium, 22.5% sulfur, 45.1% oxygen \qquad
4. $29.15 \% \mathrm{~N}, 8.41 \% \mathrm{H}, 12.50 \% \mathrm{C}, 49.94 \% \mathrm{O}$ \qquad
5. $10.52 \mathrm{~g} \mathrm{Ni}, 4.38 \mathrm{~g} \mathrm{C}$, and 5.10 g N \qquad
6. Glycerol is a thick, sweet liquid obtained as a byproduct of the manufacture of soap. Its percent composition is 39.12% carbon, 8.75% hydrogen, and 52.12% oxygen. What is its empirical formula?
7. Analysis of a compound containing chlorine and lead reveals that the compound is 59.37% lead. What is the empirical formula of this compound?
\qquad Date \qquad

Molecular Formula

Directions: Determine the molecular formula for each compound below.

1. empirical formula CH , molar mass $78 \mathrm{~g} / \mathrm{mol}$
2. empirical formula NH_{2}, molar mass $32.06 \mathrm{~g} / \mathrm{mol}$
\qquad
3. ${ }^{2}$
\qquad
4. empirical formula NO_{2}, molar mass $92 \mathrm{~g} / \mathrm{mol}$
5. empirical formula OCNCl, molar mass $232.41 \mathrm{~g} / \mathrm{mol}$
\qquad
6. A compound with an empirical formula of $\mathrm{CH}_{2} \mathrm{O}$ has a molar mass of $60 . \mathrm{g} / \mathrm{mol}$. What is its molecular formula?
7. Determine the molecular formula for ibuprofen, a common headache remedy. Analysis of ibuprofen yields a molar mass of $206 \mathrm{~g} / \mathrm{mol}$ and a percent composition of $75.7 \% \mathrm{C}$, 8.80\% H and 15.5\% O.
\qquad Date \qquad

Stoichiomety Practice

Mole-to-Mole Conversions

Directions: Solve the following problems.

1. If the following equation occurs:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

a. How many moles of oxygen are required to react completely with $3.5 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}$?
b. How many moles of CO_{2} will be produced if the conditions in Question 1a are met?
2. One of the main components of pearls is calcium carbonate. If pearls are put in acidic solution, they dissolve.

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

a. How many moles of CaCO_{3} can be dissolved in 0.0350 mol HCl ?
b. How many moles of CaCl_{2} will be produced if the conditions in Question 2a are met?
\qquad Date \qquad

Mass-to-Mass Conversions

Directions: Solve the following problems.

1. The fuel methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is made by the reaction of carbon monoxide and hydrogen.

$$
\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}
$$

a. How many grams of hydrogen are needed to produce 55.0 grams of methanol?
b. How many grams of methanol will be produced if 149 grams of carbon monoxide is used (hydrogen is in excess).
2. If the following equation occurs:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

a. What mass of oxygen is required to completely react with $4 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}$?
b. What is the mass of CO_{2} produced if the conditions in Question 4a are met?
3. Chloroform $\left(\mathrm{CHCl}_{3}\right)$, an important solvent, is produced by a reaction between methane $\left(\mathrm{CH}_{4}\right)$ and chlorine. The other product is hydrochloric acid (HCl).

$$
\mathrm{CH}_{4}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+3 \mathrm{HCl}
$$

a. How many grams of CH_{4} are needed to produce 60.0 grams of CHCl_{3} ?
b. How many grams of HCl will be produced if the conditions in Question 5b are met?

Name \qquad Date \qquad

More Stoichiometry Practice

Directions: Solve the following problems.

1. Car batteries use solid lead and lead(IV) oxide with sulfuric acid solution produce an electric current. The products of this reaction are lead(II) sulfate in solution and water.
a. Write the balanced chemical equation for this reaction.
b. Determine the mass of lead(II) sulfate produced when 24.0 g lead reacts with an excess of lead(IV) oxide and sulfuric acid.
2. Use this equation to solve this problem:

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}
$$

If 6.30 mol calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with an excess of water, how many moles of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ will be produced?
3. A car's catalytic converter combines carbon monoxide with oxygen to form carbon dioxide gas.
a. Write the balanced equation for this reaction.
b. What volume of oxygen is required to that 650 mL of carbon monoxide gas is completely converted to carbon monoxide?
c. How many liters of carbon dioxide are produced if the catalytic converter processes 7.25 L of carbon monoxide?
4. Why is a balanced chemical equation required to solve stoichiometry problems?

