	Date
Name	Date

Formula Mass

Directions: Determine the gram formula mass (the mass of one mole) of each compound below. Show your work for the **ODD** examples only!

1. Iron (II) Sulfide	
2. Ca(NO₃)₂	
3. Carbonic acid	
4. Caffeine, C ₈ H ₁₀ N ₄ O ₂	
5. Calcium hydroxide	
6. Chlorine gas	
7. Mg ₃ (PO ₄) ₂	
8. CuSO ₄ •5H ₂ O	
9. Ammonium sulfate	
10. Copper (II) nitrate pentahydrate	

	Dete
Name	Date
wame	

Percent Composition

Directions: Determine the percent composition by mass of each of the following compounds.

1. C₆H₁₂O₆

C =

H=____

0 = _____

2. NH₄NO₃

N = _____

H = ____

0 = _____

3. Mg(NO₃)₂

Mg = _____

N = _____

0 = _____

4. Potassium phosphate tetrahydrate

K = _____

P = _____

O = _____

H = _____

5. Pb(CH₃COO)₂

Pb = _____

C = _____

H = _____

O = _____

10) 7.5 grams of sulfuric acid

Unit 6 M	ole and Stoichiometry HW Packet	
Name		Dat
	Mole Conversions	
Directio	ns: Determine the number of moles in each of the quantities below.	
1) 1	130 g of H₂SO₄	
2)	87 g of KCl	
3) :	2.8 grams of calcium carbonate	
Directio	ons: Determine the number of grams in each of the quantities below.	
4)	3.5 moles of NaCl	
5)	2.80 moles of KMnO ₄	
6)	1.25 moles of nitrogen gas	
Direction	ons: Determine the number of molecules in the quantities below.	
7)	2.2 moles	
8)	0.17 moles	
9)	9.43 grams of magnesium chloride	

lama		

Date _____

Mixed Mole Conversions

Directions: Solve the following problems.

- 1) How many grams are there in 1.2×10^{26} molecules of CO₂?
- 2) What volume would the CO₂ in Problem 1 occupy at STP?
- 3) A sample of NH₃ gas occupies 82.0 liters at STP. How many molecules is this?
- 4) What is the mass of the sample of NH₃ in Problem 3?
- 5) How many moles are there in 1.3x10²² molecules of NO₂?
- 6) How many atoms are there is 12.7×10^{24} molecules of CO_2 ?
- 7) A 8.1 g sample of O_2 is in a container at STP. What volume is the container?
- 8) How many molecules of O2 are in the container in Problem 7? How many atoms?

Unit 6 I	Mole and Stoichiometry HW Packet
Name_	Date
	Empirical Formula
Directi	ons: Determine the empirical formula for each compound below.
1.	74.51% Pb, 25.49% Cl
2.	52.55% Ba, 10.72% N, 36.73% O
3.	29.15% N, 8.41% H, 12.50% C, 49.94% O
4.	Glycerol is a thick, sweet liquid obtained as a byproduct of the manufacture of soap. Its percent composition is 39.12% carbon, 8.75% hydrogen, and 52.12% oxygen. What is its empirical formula?
5.	Analysis of a compound containing chlorine and lead reveals that the compound is 59.37% lead. What is the empirical formula of this compound?
6.	A 15.0g sample of a compound is found to contain 8.83g sodium and 6.17g sulfur. Calculate the empirical formula of this compound.
7.	What is the empirical formula for $H_2C_2O_4$?

Unit 6	Mole and Stoichiometry HW Packet
Name_	Date
	Molecular Formula
Direct	ions: Determine the molecular formula for each compound below.
1.	empirical formula CH, molar mass 78 g/mol
2.	empirical formula NH ₂ , molar mass 32.06 g/mol
3.	empirical formula OCNCI, molar mass 232.41 g/mol
4.	A compound with the following composition has a molar mass of 60.10 g/mol: 39.97% carbon, 13.41% hydrogen, 46.62% nitrogen. Find the molecular formula.
5.	Determine the molecular formula for ibuprofen, a common headache remedy. Analysis of ibuprofen yields a molar mass of 206 g/mol and a percent composition of 75.7% C, 8.80% H and 15.5% O.
6.	A certain compound has an empirical formula for NH ₂ O and its molar mass is between 55 g/mol and 65 g/mol. Wat is the possible molecular formula?

a. N₂H₄O₂
 b. N₂H₂O₂
 c. NH₂O

Name		Date	Block
Directions: Be sure to show all		Stoichiometry significant figures and	d include units.
			ction between sodium bicarbonate
NaHCO ₃ + HCI>	+	+	
2. If you use 3.2 moles of sodiu a. How many moles of HCl wou	m bicarbonate Ild be used?	e in the reaction in qu	estion #1,
b. How many moles of each pro	oduct would b	e produced?	
3) Given this equation: $C_{(s)} + 2C_{(s)}$	$Cl_{2(g)} \rightarrow CCl_{4(s)}$, write the following	molar ratios:
a) Cl ₂ to CCl ₄	b) C to CCl ₄	C) CCl ₄ to Cl ₂
4) Answer the following questi	ons for this eq	μ ation: $2H_2 + O_2 \rightarrow 2$	H ₂ O
If you mix 20.0 moles of H₂ wi	th excess O ₂ , h	now many moles of H	₂O can you make?
5) Balance this equation and u	ise it to answe	r the following quest	ion.
Ca+O₂ →C	CaO		
How many moles of oxygen w		to produce 14.0 mol	calcium oxide?
Use this equation: N₂ + 3H₂ →	≥ 2NH₃, for the	e following problems	
a) If 2.5 moles of N₂ react, ho	w many moles	of NH₃ can be produ	ced?
b) If 10.0 moles of NH₃ are pr	oduced, how r	many moles of H ₂ wo	uld be required?

Page 7

Name	Date	Block
Molar Mas	s Stoichiometi	rv
Directions: Be sure to show all work, correct sign		-
1. How many grams of NaCl are produced when 1	.3.0 grams of sodiu	ım react with excess chlorine?
2. When sulfur trioxide and water react they pro needed to create 4.00 mol of sulfuric acid?	duce sulfuric acid.	What mass of sulfur trioxde is
3. How many grams of magnesium nitrate are pro	oduced when 8 00	g of nitric acid react with magnesium
hydroxide?	Judeed When old	8 or mane actor (case)
4. How many moles of KClO₃ decompose into 250).0 grams of oxyge	n?
5. When 100. g of methane (CH ₄) combust how n	nany grams of carb	oon dioxide form?

Name	Date	Block
	ne Stoichiometry	
Directions: Be sure to show all work, correct	significant figures and ir	iciude units.
1. Use the reaction below to answer the quereact with 4.80 g of K_2MnO_4 ?	stion. What volume of c	hlorine gas at STP is required to
2K₂MnO	$_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$	
2. When 1.6 L of hydrogen gas reacts with e chloride gas is formed?	xcess chlorine gas reacts	at STP what volume of hydroger
3. How many liters of CO₂ can be produced f	rom 0.67 mole of Fe₂O₃	at STP?
Fe₂O	₃ + 3CO → 2Fe + 3CO ₂	

Name		Date	Block	
	Limiting Re	actants		
Directions: Be sure to show all w			ude units.	
1. To determine the limiting reaa) the available amount of one reb) the available mount of each rec) the speed of the reaction	eactant	must know	·	
 2. In the reaction A + B → C + D, a) A is the limiting reactant b) B is the limiting reactant c) there is no limiting reactant d) no product can be formed 	if the quantity of B is i	nsufficient to rea	act with all of A then	
3. How much aluminum sulfide of	can form when 9.00 g o	of aluminum rea	ct with 8.00 g of sulfur?	
4. If 4.44 g of CaO reactant with	7.77 g of water how n	nany calcium hy	droxide is formed?	
5. Answer all parts of the follow 9.8 g of phosphoric acid react.	ving question using the 3 Ca(OH)₂+2 H₃PO₄→			i
a) What is the limiting reactant? b) What is the theoretical yield? c) How much excess reactant re		on goes to comp	oletion?	

d) If 12.5 grams of calcium phosphate were made, what is the percent yield?

