Honors Chemistry Unit 3 - Bonding Notes

Introduction

- 1. What is a chemical bond?
- 2. Atoms bond to ______. How many valence electrons do most atoms want? _____
- 3. Three Types of Bonds
 - a. ______ electrostatic force of attraction between (+) and (-) ions
 b. ______ sharing of electrons between ______ atoms
 i. Four sub types:
 1.
 2.
 3.
 4.
 - c. ______ attraction between metal cations and outer mobile electrons
- 4. Main questions for each bond type:
 - a. What atoms combine to make the bond?
 - b. How do the atoms combine together?
 - c. What properties result from the bond type created?

Ionic Bonding

1. What is ionic bonding?

2. Key things to remember:

Metals	Nonmetals	

3.	Let's try it! REMEMBER	: Overall charge must b	be:	<u> </u>	
	Li and F	Ca and Cl	Na and S	Mg and P	Be and O

4. Lewis dot structures!

- a. Calcium and chlorine
- b. Sodium and sulfur
- c. Beryllium and oxygen
- 5. Ionic bonding results in the formation of:

NaCl crystal

- 6. What is a formula unit?
- 7. These ions align with each other to create a ______:
- 8. Lattice energy:
- 9. Properties of ionic compounds
 - a. _____ melting points and boiling points. Why?
 - b. Soluble in _____. Why?
 - c. Hard crystalline solids but can fracture. Why?
 - d. ______ in liquid or dissolved states. Why?
 - e. _____ in solid state. Why?

Covalent Bonding

1. What is covalent bonding?

- 2. Ionic or covalent?
 - a. CH₄ ionic or covalent
 - b. Fe_2O_3 ionic or covalent
 - c. I₂ ionic or covalent
 - d. H₂O ionic or covalent
 - e. BeCl₂ ionic or covalent
- 3. Lewis dot structures

Helpful hints:

- Least electronegative compound goes in the middle
- Must follow the Octet Rule: atoms tend to gain, lose, or share valence electrons so that they have 8 valence electrons
 - Exceptions: H (2 e-), Be (4 e-), B (6 e-)
- Before and after: count total number of valence electrons

Let's try it!

a. H_2O

 $b. \ NF_3$

 $c. \quad CH_2O$

 $d. \quad N_2$

Single bond

N≡N

Triple bond

Label each bond with facts about each \rightarrow

Polyatomic ions

1. What are they?

- 2. Let's try it! a. ClO₄-

 - b. NH4⁺
- Start memorizing these! Found in your Reference Tables! 3.
- 4. Let's try it! What ionic compound with form:
 - a. Sodium and carbonate
 - b. Calcium and hydroxide

Polarity

- 1. Not all atoms share electrons equally!
- 2. The valence electrons can be shared equally or unequally, which creates two of the four types of covalent bonds. Polar Covalent Bond
 - a. Polar covalent bond:

Partial charges on atoms.

- 4. Let's try it! a. H – S (2.1, 2.5)
 - b. S Cl (2.5, 3.0)
 - c. Cs S (0.7, 2.5)
 - d. O O (3.5, 3.5)

Covalent Bonding continued

- 1. Molecular compound:
- 2. Molecule:
- 3. Diatomic Molecules:
- 4. When molecules form, the resulting bond has a length, energy and angle associated with it.a. Bond Length:
 - b. Bond angle:
 - c. Bond energy:

5. _____: weakest bond, longest bond, least amount of energy

_____: strongest bond, shortest bond, most amount of energy

6. Coordinate covalent bond:

Bond strength increases as the amount of eshared increases resulting in shorter bonds with greater energy

- 7. Network covalent bond
 - a. Definition:
 - b. Examples:
 - c. Properties:
- 8. Properties of molecules:
 - a. _____ or dull, brittle _____
 - b. _____ conductors of heat and electricity. Why?
 - c. _____ melting and boiling points. Why?
 - d. Solubility depends on "______." What does that mean?

Metallic bonding

1. What is it?

- 2. Strength is determined by:
- 3. Properties of Metallic Crystals
 - a. Hard, metallic crystals
 - b. _____ conductors of heat and electricity. Why?

c. _____melting and boiling points. Why?

d. Shiny (_____). Why?

e. ______(hammered in thin sheets) and ______ (drawn into thin wires). Why?

f. _____ in water. Why?

Molecular Geometry – VSEPR Theory

1. VSEPR Theory (______) a.

2. Memorize this!

Shape	# Bonds to Central Atom	# Lone Pairs to Central Atom	Examples	Bond Angles
Linear	2 atoms together or 2 bonds to central atom	0	H-Cl O = C = O	180°
Bent	2 2	2 1	H, O, H	104.5°
Trigonal Planar	3	0		120°
Trigonal Pyramidal	3	1	H ^{WY} H H	107.5°
Tetrahedral	4	0		109.5°

Molecular Polarity

1. What is it?

2. Molecular polarity depends on:

- a. Bond polarity:
- b. *****MORE IMPORTANTLY***** Molecular shape:

- 3. Molecular polarity influences intermolecular forces!
- 4. Nonpolar molecules are _____
- 5. Polar molecules are _____
- a. Polar molecules are called ______ because they have negative and positive ends of the molecules.
- 6. Let's try it! Name and sketch the shape of the following. Is it polar or nonpolar?

a. H_2O

 $b. \quad CBr_4$

Intermolecular Forces (IMFs)

- 1. What are they?
- 2. Five types:
 - a.
 - b.
 - c.
 - d. e.
- 3. Dipole-dipole
 - a. Exist between _____ molecules
 - b. Causes molecules to have _____ melting points and boiling points than expected
 - c. Substances exist mostly as ______ or _____ due to the strength of the imf

Dipole-dipole interactions are *similar to* but *much* weaker than ionic bonds.

4. Dipole-induced dipole forces

a. Exists between ______ and _____ molecules.

b. How is it created?

- c. Ex? 5. Ion-dipole forces
 - a. Exists between an ______ and a ______ molecule.
 - b. How is it created?

6. Hydrogen bonding

- a. This is a special dipole-dipole force that is the **strongest** of the dipole-dipole forces.
- b. When does it occur?

н-н

H₂(A)

H₂(A)

(b)

н-н

H-(B)

H₂(B)

No polarization

00

He(A) He(B)

on at (a)

He(A) He(B)

No polarization

Instantaneous dipole on atom /

δ⁻ δ⁺ δ⁻ δ He(A) He(B)

- c. This imf gives water its unusual properties:
 - i.
 - ii.
 - iii.
- 7. London Dispersion Forces
 - a. This is the ONLY type of imf that can occur in _____ molecules.
 - b. How is it created?
 - c. This is the _____ imf and its strength increases with _
 - d. Causes molecules to have _____ melting and boiling points.
 - e. Most of the substances with only LDF imfs are ______.
 - f. <u>Special note:</u>
- 8. Rank the intermolecular forces from strongest to weakest:

Properties and bonding

- 1. Melting point:
- 2. Boiling point:
- 3. Density:
- 4. Color:
- 5. Solubility:
- 6. Stronger bonds/imfs =

Weaker bonds/imfs =