Matter and the Atom

Name_

Test Date

Matter and Its Properties

Word	Definition
Mass	Measured in:
Matter	
Atom	
Element	Ex:
Compound	Ex:
Characteristic property	Used for?
Extensive property	Ex:
Intensive property	Ex:

Physical properties:

Ex:

Physical Change:

Ex:

Solid:

Liquid:

Gas:

Write the vocab word for each of the phase changes below:

- a. Solid to liquid
- b. Liquid to gas
- c. Gas to liquid
- d. Liquid to solid
- e. Solid to gas
- f. Gas to solid

Chemical properties:

Ex:

Chemical change:

Ex:

*A chemical change is often written as a _____

Chemical reactions are labeled in two sections:

a)

b)

Label the reaction provided below. $H_2 + O_2 \rightarrow H_2O$

There are <u>5</u> main indicators of a chemical change 1) 2) 3) 4) 5) **** The only 100% guaranteed way to indicate a chemical change is ______*****

Identify the following as a physical/chemical change

- *1*) *Breaking a pencil*
- 2) Wood burning
- 3) Silver tarnishing
- 4) Ice melting

More Practice: Try at home when studying!

- 1) Cutting a piece of paper
- 2) Brownies baking in the oven
- 3) Boiling water

- 5) Hard boiling an egg
- 6) Grinding coffee beans
- 7) Burning gasoline
- 4) Permanently coloring hair
- 5) Painting nails
 - 6) Freezing popsicles

Define the law of conservation of energy:

	Classification	of Matter		
Define mixture:				
Mixtures can either	be	or		
A homogeneous mi They are also called Examples:	xtures is: 1	-		
Heterogeneous Mixtures are:			Draw a picture of a heterogeneous mixture	
Examples:				
Is it heterogeneous	of homogeneous	?		
1) Stainless ste	el	5) Ha	and Lotion	
2) Granite		6) Oi	6) Oil and water	

- 3) Air
- 4) Blood

- 7) Wild Bird Seed
- 8) Chunky PB
- 9) Dirt

How do pure substances differ from mixtures?

1.

2. Colloids/Suspension/Solutions: A solution is a

Ex: Alloy:

A suspension is a

Ex:

A colloid is a

Ex: Tyndall Effect:

The Atom

Matter can be classified as _	and
-------------------------------	-----

There are two types of pure substances:	and
---	-----

The smallest unit of an element is called an _____.

The atom is made up of:

1)

2)

3)

Parts of the Atom

Particle	Symbol	Charge	Relative mass	Location in Atom

Define nucleons:

Define atomic number (Z):

Define mass number (A)

Define atomic mass:

Define ion:

Define isotopes:

Define nuclides:

 ${}^{15}_{7}N^{-3}$

Write Isotope Notation for the following: a) Calcium-41 b) Sodium-23

c) Bromine-81

Hyphen Notation Nitrogen-15

5 Nitrogen-14

- a. What is different about these isotopes?
- b. What is the same about them?

Helpful Hints with protons, neutrons and electrons

*

```
*
```

```
*
```

Solving for Protons, Neutrons and Electrons:

Element (or ion)	Atomic #	Mass #	Average Atomic Mass	p^+	n^0	e	Isotope notation

Calculating Average Atomic Mass

This system is a relative system based on the mass of a standard nuclide.

This nuclide is ______.

The unit for me	asuring atomic r	nasses is the
(Abbreviation: _)

Ex 1) Calculate the average atomic mass of boron if a sample contains: Isotope Abundance: 19.78% Boron-10 (AM = 10.013 amu) 80.22% Boron-11 (AM = 11.009 amu)

Answer:_____

Ex 2) What is the atomic mass of an element with the following isotopes.

Isotope Abundance:

- Magnesium-24 78.70%
- Magnesium-25 10.13%
- Magnesium-26 11.17%

Answer	
	History of the Atom

Dalton's Atomic Theory

1.

- 2.
- 3.
- 4.

Person	How did he contribute?
Democritus	
Dalton	
J.J. Thomson	
Rutherford	
Bohr	
Chadwick	

Models of the Atom		
Dalton's	Plum Pudding (Thomson's)	
Nuclear (Rutherford's)	Planetary (Bohr's)	
Electron Cloud		