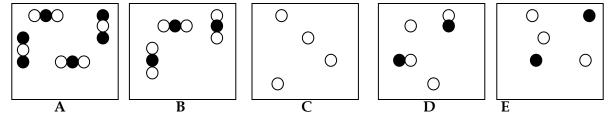
Name___


Date

Matter: Pure Substances and Mixtures

Part I: Directions: Classify each of the materials below. In the center column, state whether the material is a **pure substance** or a **mixture**. If the material is a pure substance, further classify it as either an **element** or **compound** in the right column. Similarly, if the material is a mixture, further classify it as **homogeneous** or **heterogeneous** in the right column

Material	Pure Substance Or Mixture	► Element, Compound, Heterogeneous or Homogeneous
Water		
Soil		
concrete		
sugar + pure water		
(C ₁₂ H ₂₂ O ₁₁ + H ₂ O)		
iron filings (Fe)		
limestone (CaCO₃)		
orange juice (w/pulp)		
chromium (Cr)		
Chex mix		
salt + pure water		
(NaCl + H_2O)		
benzene (C ₆ H ₆)		
muddy water		
brass		
(Cu mixed with Zn)		
baking soda (NaHCO₃)		
Mint chocolate chip ice cream		

Part II: Directions: Match each diagram with its correct description. Diagrams will be used once.

- ____1. Pure Element only one type of atom present.
- ____2. Mixture of two elements two types of uncombined atoms present.
- ____3. Pure compound only one type of compound present.
- ____4. Mixture of two compounds two types of compounds present.
- ____5. Mixture of a compound and an element.

Name	Date				
Physical and Chemical Properties and Changes					
Part I Directions: Identify if the following are Physical Propert1. blue color	ties (P) or Chemical Properties (C). 6. melting point				
2. density	7. reacts with water				
3. flammability (burns)	8. hardness				
4. solubility (dissolves)	9. boiling point				
5. Luster (shine)	10. reacts with an acid				
Part II Directions: Identify if the following are Physical Change	es (P) or Chemical Changes (C).				
1. NaCl (Table Salt) dissolves in water.	6. Milk sours.				
2. Ag (Silver) tarnishes.	7. Sugar dissolves in water.				
3. An apple is cut.	8. Wood rots.				
4. Heat changes H ₂ O to steam.	9. Pancakes cook.				
5. Baking soda reacts to vinegar.	10. Snow melts				

Part III Directions: Read each scenario. Decide whether a physical or chemical change has occurred and give **2 pieces** of evidence for your decision.

	Scenario	Physical or Chemical Change?	Evidence
1.	A student removes a loaf of bread hot from the oven. The student cuts a slice off the loaf and spreads butter on it.		,
2.	Your friend decides to toast a piece of bread, but leaves it in the toaster too long. The bread is black and the kitchen if full of smoke.		
3.	A straight piece of wire is coiled to form a spring.		
4.	You blow dry your wet hair.		

Unit 2 Matter and the Atom H	HW Packet
------------------------------	-----------

Name	Date	
_		

The Atom

Part I Directions: Use the periodic table to identify each element described below.

- 1. Element with an atomic number of 65.
- 2. A neutral element with 44 protons and 44 electrons.
- 3. An element with 21 protons.
- 4. A neutral element with 78 electrons.
- 5. An element with 17 protons and 19 neutrons.

Part II Directions: Fill in the table below using the periodic table.

Name of Element	Element Symbol	Mass Number	Atomic Number	Protons	Neutrons	Electrons
Boron	В	11	5	5	6	5
Sodium		24	11			
Gallium				31	37	
	Y	89				39
Copper			29		35	
	Тс	98		43		

Part III Directions: Label the parts of the atom below.

*The number of _______determines the identity of an element

Unit 2 Matter and the Ato	m HW Packet
---------------------------	-------------

Name	meDate					
	Isotope	S				
Directions : Answer the following questions.	For questio	ns 4-6 show your wo	ork and include units.			
1) Given the following information you can A a. Number of protons			of an element (YES OR NO)			
b. Number of neutrons		-				
c. Number of electrons in a neutral atom						
d. Number of electrons						
2) Here are three isotopes of an element:	¹² ₆ C	¹³ ₆ C	$^{14}_{6}C$			
a. The element is:						
b. The number 6 refers to the						
c. The numbers 12, 13, and 14 refer to	the					
d. How many protons and neutrons are	in the first	isotope?				
e. How many protons and neutrons are	in the seco	nd isotope?				
f. How many protons and neutrons are	in the thirc	l isotope?				

3) Fill in the table below. Beside the table list 2 similarities for these isotopes and 2 differences.

Chromium-58	Chromium-63
	Chromium-58

Name_____

Date___

4) Calculate the atomic mass of copper if copper-63 is 69.17% abundant and copper-65 is 30.83% abundant.

5) Lithium-6 is 4% abundant and lithium-7 is 96% abundant. What is the average mass of lithium?

6) Iodine is 80% ¹²⁷I, 17% ¹²⁶I, and 3% ¹²⁸I. Calculate the average atomic mass of iodine.

7) Boron exists in two isotopes, boron-10 and boron-11. Based on the average atomic mass, which isotope should be more abundant? WHY?

8) Explain the difference between mass number and average atomic mass.

Isotope Notation	Atomic Number	Mass Number	Number of Protons	Number of Electrons	Number of Neutrons
²³ Na				10	
к		40		19	
			16	18	17
		109	47	46	

9) Fill in the table below:

Name___

Date

Magic Square: The Atom

Directions: Put the number of the definition from the list below into the square with the appropriate term. Check your answers by adding the numbers to see if all the sums of all rows, both across and down add up to the same number, the Magic #.

Democritus	Dalton	Thomson	Chadwick	Total
Rutherford	Proton	Atom	Bohr	
	Neutres	Nuclaura		
Wave Model	Neutron	Nucleus	Alpha particle	
Electron	Model	Energy levels	Electron cloud	
Total				

Magic Number

- 1. Represented by a symbol; all are found on the Periodic Table
- 2. Made a mental model of the atom; Greek philosopher
- 3. Used by Rutherford in his experiment; made of two protons and two neutrons
- 4. The paths in which electrons circle the nucleus according to the Bohr model
- 5. The positive particle in the nucleus of an atom
- 6. The tiny positive core of an atom; contains protons and neutrons
- 7. Formed the atomic theory model of the atom; English schoolteacher
- 8. Discovered the nucleus using his gold foil experiment
- 9. Current explanation of where electrons might be found in the atom
- 10. Used by scientists to explain something we cannot see or understand
- 11. The smallest particle of an element that has the properties of that element
- 12. Discovered the neutron
- 13. Current model of the atom; proposed by Schrodinger
- 14. Mass of protons and neutrons
- 15. Developed the model of the atom in which electrons orbit the nucleus in energy levels
- 16. The negative particle that circles the nucleus
- 17. The neutral particle in the nucleus of an atom
- 18. Proposed the "plum-pudding" model of the atom; discovered the electron

