Intro to Chemistry (Scientific Method and Metrics)

Name

Test Date

Vocabulary to know

Terms	
hypothesis	
control	
variable	
accuracy	
Precision	
Independent variable	
Dependent variable	
Qualitative	
Quantitative	
Observation	
Model	
Theory	
Law	

What is Chemistry? \qquad

Branches of Chemistry:

$*$	$*$
$*$	$*$
$*$	$*$

The Scientific Method is
List the steps:
1)
2)
3)
4)
5)
6)
7)

Hypothesis:
You write a hypothesis as an \qquad 1 statement

Variable:
Independent Variable:
Ex:
Dependent Variable:
Ex:

Experiment Example

Hypothesis:
Independent Variable:
Dependent Variable:
Control:

Collecting Data

Quantitative:
Ex:
Qualitative:
Ex:
Observation:
Ex:
Inference:
Ex:
Model:
Ex:
Theory:
Ex:
Law:
Ex:

The International System (SI)
Why is it used?

Term	Unit Name	Symbol
Length		
	Kilogram	
		s
	Kelvin	
Amount		

Derived Units

Definition:
Examples:

The Metric System:

The metric, system is based on a factor of

Metric Prefixes

Prefix	Symbol	Exponent with no negative values
mega-	M	10^{6} base $=1$ mega
kilo-	k	1000 base $=1$ kilo
hecto-	h	100 base $=1$ hecto
deka-	$\mathrm{D}(\mathrm{dk})$	10 base $=1$ deka
Base	Meter, gram, second, liter	
deci-	d	1 base $=10$ deci
centi-	c	1 base $=100$ centi
milli-	m	1 base $=1000$ milli
micro-	μ	1 base $=10^{6}$ micro
nano-	n	1 base $=10^{9}$ nano
pico-	p	1 base $=10^{12}$ pico

Measurement and Estimated Digits:

Measurement:

Estimated digits:

Example:

1) Measure this to the correct digits. Be sure to include units

Answer \qquad
2) Measure this to the correct digits. Assume these units are mL.

\qquad

Accuracy:
Definition
Picture

Definition

Student	Trial 1	Trial 2	Trial 3	Average
A	1.78 g	2.25 g	10.5 g	4.71 g
B	4.75 g	4.74 g	4.75 g	4.75 g
C	7.73 g	7.72 g	7.73 g	7.73 g

True Value: $\underline{4.73 ~ g}^{\mathbf{g}}$
Using the table above describe the accuracy and precision of each of the students.

Scientific Notation

Why:
How:

Try It:

Write the following in scientific notation
5, 600, 000 m
0.000789 nL

3,700 sec
Write the following in standard notation
$9.12 \times 10-3 \mathrm{cg}$
$5.6 \times 10^{9} \mathrm{~m}$
$2.2 \times 10^{2} \mathrm{sec}$

Graphing

Types of graphs:
1)
2)
3)

Most Commonly Used in Chemistry:

Parts of a graph that are SUPER important:

Direct Relationship
Definition:
Example:
Picture:

Inverse Relationship:
Definition:
Example:
Picture:

Dimensional Analysis:

What is it?

Try It:

1)
2)
3)

Volume and Density

Volume:
Definition:
Units of measurement:
Density:
Definition:
Units of Measurement:

The density of water is

Try It:

1) If a sample of aluminum has a volume of $5.0 \mathrm{~cm}^{3}$ and a mass of 13.5 g . Find the density.
Formula: \qquad
Work:
\qquad
2) Find the mass of a sample of copper with a volume of $6.2 \mathrm{~cm}^{3}$. Formula: \qquad Work:

Answer with units \qquad
3) A student observes the reading of a graduated cylinder to be 7.3 mL . After dropping irregularly shaped solid object with a mass of 2.5 grams into the cylinder the volume rises to 12.9 mL . What is the density of the object?
Formula: \qquad Work:

Answer with units \qquad

\%Error Formula:

$\frac{\mid \text { Measured }- \text { Actual } \mid}{\text { Actual }} \times 100$
What is Jake's percent error, if he measured 6.8 mL during his experiment and the actual measurement was supposed to be 7.2 mL ?

