Intro to Chemistry (Scientific Method and Metrics)

Vocabulary to know

Terms	Definition
hypothesis	
control	
variable	
accuracy	
Precision	
Independent variable	
Dependent variable	
Qualitative	
Quantitative	
Observation	
Model	
Theory	
Law	

What is Chemistry?_____

Branches of Chemistry:

*	*
*	*
*	*

The Scientific Method is_____

List the steps:		
1)		
2)		
3)		
4)		
5)		
6)		
7)		
Hypothesis:		
You write a hypothesis as an _	<u> </u>	statement

Variable:

Independent Variable: Ex:

Dependent Variable: Ex:

Experiment Example

Hypothesis:

Independent Variable:

Dependent Variable:

Control:

Collecting Data <u>Quantitative:</u> Ex:

<u>Qualitative:</u> Ex:

Observation: Ex:

Inference: Ex:

<u>Model:</u> Ex:

Theory:

Ex:

<u>Law:</u> Ex:

The International System (SI)

Why is it used?

Term	Unit Name	Symbol
Length		
	Kilogram	
		S
	Kelvin	
Amount		

Derived Units Definition: Examples:

The Metric System:

The metric system is based on a factor of _____

<mark>Metric Prefixes</mark>

Prefix	Symbol Exponent with no	
		negative values
mega-	М	10^6 base = 1 mega
kilo-	k	1000 base = 1 kilo
hecto-	h	100 base = 1 hecto
deka-	D (dk)	10 base = 1 deka
Base	Meter, gram,	
	second, liter	
deci-	d	1 base = 10 deci
centi-	С	1 base = 100 centi
milli-	m	1 base = 1000 milli
micro-	μ	$1 \text{ base} = 10^6 \text{ micro}$
nano-	n	1 base = 10^9 nano
pico-	р	1 base = 10^{12} pico

Measurement and Estimated Digits: Measurement:

Estimated digits:

Example:

1) Measure this to the correct digits. Be sure to include units

Answer_____

2) Measure this to the correct digits. Assume these units are mL.

Answer_____

Accuracy versus Precision Accuracy: Definition

Picture
Picture

Precision: Definition

Student	Trial 1	Trial 2	Trial 3	Average
А	1.78 g	2.25 g	10.5 g	4.71 g
В	4.75 g	4.74g	4.75g	4.75 g
С	7.73 g	7.72g	7.73 g	7.73 g
True Value: 4.73 g_				

Using the table above describe the accuracy and precision of each of the students.

Scientific Notation Why:

How:

Try It:

Write the following in scientific notation 5, 600, 000 m 0.000789 nL 3,700 sec

Write the following in standard notation 9.12 x 10-3 cg $5.6 \times 10^9 \text{ m}$ 2.2 x 10^2 sec

Graphing

Types of graphs: 1) 2) 3)

Most Commonly Used in Chemistry:

Parts of a graph that are SUPER important:

Direct Relationship Definition: Example: Picture:

Inverse Relationship: Definition: Example: Picture:

Dimensional Analysis:

What is it?

Try It:

1)

2)

3)

Volume and Density

<u>Volume:</u> Definition: Units of measurement:

<u>Density:</u> Definition: Units of Measurement:

The density of water is

Try It:

Answer with units_____

Answer with units_____

Answer with units_____

<u>%Error Formula:</u>

 $\frac{|Measured - Actual|}{Actual} \times 100$

What is Jake's percent error, if he measured 6.8 mL during his experiment and the actual measurement was supposed to be 7.2 mL?