Honors Chemistry Unit 1 – Intro and Atomic Theory Notes

	c				
Intro –	Scier	ITITIC	ıvıeası	ırem	ents

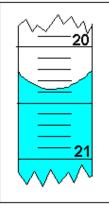
1. Chemistry is the study of

2. SI Base Units used in Chemistry:

Quantity	Unit Name	Abbreviation	Tool to Measure
Length			
Mass			
Time			
Temperature			
Amount of Substance			

3.	What is a	derived	<u>l unit</u> ?	List 5	exampl	es
----	-----------	---------	-----------------	--------	--------	----

4. Fill out the following table


I III Out the following table			
1 mega (M)	10 ⁶ base		
Base	Meter, liter, gram, second		

- 5. What is a measurement?
- 6. Why are measurements always uncertain?

7. Define:

Accuracy	
<u>Precision</u>	
Percent Error	

- 8. What is Jake's percent error, if he measured the density of a substance to be 6.8 g/mL during his experiment and the accepted value is 7.2 g/mL?
- 9. Measure this to the correct digits. Assume these units are mL.

Answer____

- 10. Significant figures:
- 11. Write your approved list of rules below:
- 12. Use your rules to determine number of sigfigs below:
 - 1. 500. L
 - 2. 820.0 L
 - 3. 1.0200x10⁵kg
 - 4. 807,000 kg
 - 5. 0.080s
- 13. Multiplying and dividing with sig figs: The number with the fewest sig figs determines the number of sig figs in the answer.

Example: 13.91g/cm3 X 23.3cm3

14. Adding and subtracting with sig figs: The number with the lowest decimal value determines the place of the last sig fig in the answer.

Example: 2.65m+5.3m

Example: 189L+270L

15. More practice

a. $19.82 \text{ g} \div 9.1 \text{ g}$

b. 18.9 g - 0.84g

Graphing	
	Interpreting Relationships from Graphs:

Interpreting Relationships from Graphs:				
Direct Proportions	Inverse (or Indirect) Proportions			

Dimensional Analysis

- 1. What is it used for?
- 2. What are unit conversions?

Examples

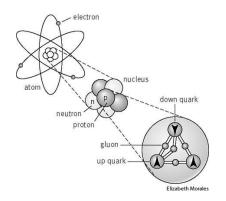
- 3. Convert 13.4 g to mg.
- 4. Convert 267 kL to L
- 5. Convert 83.12 cm to hm
- 6. Convert 72.8 km/hr to m/s

Density

- 1. Formula:
- 2. An object has a volume of 825 $\rm cm^3$ and a density of 13.6 g/cm 3 . Find its mass.

Atomic Theory:

M	atter	Pure Substances:
		1.
		2.
		·


Pure Substances:		
1.		
2.		

The smallest individual unit of an element is called an______.

A+	مرام و المرام و	مستميلممسل
atoms of two or more (elements chemically combined	i make up a

Atomic Structure:

Particle	Symbol	Relative Charge	Relative Mass	Location in the Atom
Proton				
Neutron				
Electron				

The atom consists of three subatomic particles, the ______, and _____. The electron is an elemental particle, whereas the proton and neutron consist of three smaller particles called ______.

Define:

Nucleons

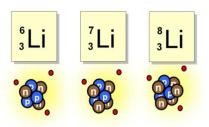
Atomic Number

Mass
Number—A (# of protons + # of neutrons)

Element

Atomic
Number—Z (# of protons)

Mass Number


Atomic Mass

CARBON Element name Usually from a Greek or Atomic number The number of protons in Latin word for the element the nucleus of the atom. or a substance containing the element. Symbol Short-hand abbreviation for the element name. Atomic mass 12.01 The average mass of the atoms in an element.

Isotopes

Nuclides

lon

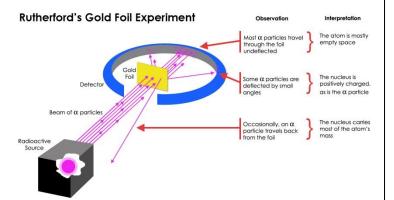
Symbolic Notation:

27 AI 34 13 AI

What is the atomic number? How many protons?	What is the mass number? How many electrons?
How many neutrons?	,

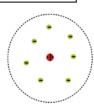
Atomic Mass: The average m	·	on the mass of a standard nuclide. This	
		. The unit for measuring atomic masses	s is the
Average Atom	ic Mass:	Use the following formula:	
To calculate av	rerage atomic mass		
Example:	Calculate the average atomic mass of 19.78% boron-10 (atomic mass of 80.22% boron-11 (atomic mass)	ass = 10.013 u)	
History of the A	Atom		
1. Early T	heories of the Atom:		
a.		posed the first idea of the atom around	430 B.C.
b.	prop	posed the first Atomic Theory in	
c.	Dalton based his theory on the work	of two scientists: v of Conservation of Mass	Dalton 1803-1805
	Law	of Definite Proportions	7n chemical changes, no matter how big the bang, mass is neither gained nor lost.
d.	Dalton used his theory to develop th	e <u>Law of Multiple Proportions</u>	Before After List of CONTROLLING OF MATTER Melity crosses be made or distroyed by ordinary chemical means.
2. Discov	ery of Subatomic Particles – Cathode	ray tubes were used to discover two su	ıbatomic particles
a.	the bending of the rays to determine	used cathode rays to discover tethe	the <u>electron</u> . He measured
b.	Modified cathode ray tubes were us determined to be positive particles a	ed to discover a beam of positive charg and were named protons .	e. These rays were The Plum Pudding Model of an Atom
C.	Thomson developed a new model of	the atom called the	Positively charged Negatively charged particles

d. ______ performed the "oil drop experiment" to determine the charge on the electron. He also used Thomson's charge to mass ratio to calculate the mass of an electron.


Describe his experiment:	Source of ionizing radiation Negatively charged plate Negatively charged plate

e. The third subatomic particle was discovered much later by ______.

Discovery of subatomic particles led to the first revision of Dalton's Atomic Theory: Atoms are not indivisible and indestructible; they are made up of smaller particles.**


Discovery of isotopes and neutrons led to the second revision of Dalton's Atomic Theory: Atoms of the same element are NOT exactly alike; they can have the same number of protons, but may have different numbers of neutrons

- 3. <u>The Nuclear Model of the Atom</u> The nucleus was the next major focus in the development of the atomic model.
 - a. ______ () studied the radiation emitted by these substances, especially the alpha particles. He directed another famous experiment, the "gold foil experiment".

Describe his experiment:

b. Rutherford's model of the atom is called the <u>nuclear model</u> of the atom.

