6. $^{234}_{90}Th \rightarrow ^{0}_{-1}e + ^{234}_{91}Pa$

Name_____

Date

Classifying Nuclear Reactions

Directions: Determine the following nuclear reactions as either **alpha**, **beta**, **gamma**, or **electron capture**.

- **Directions:** Complete the following nuclear equations so that they are balanced for both mass and nuclear charge, **then determine the type of nuclear reaction as either alpha, beta, gamma, or electron emission.**
 - 7. ${}^{212}_{84}Po \rightarrow \underline{\qquad} + {}^{208}_{82}Pb$ _____ 8. ${}^{239}_{93}Np \rightarrow \underline{\qquad} + {}^{235}_{91}Pa$ _____ 9. ${}^{93}_{43}Tc \rightarrow \underline{\qquad} + {}^{93}_{43}Tc$ _____ 10. ${}^{239}_{96}Cm + \underline{\qquad} \rightarrow {}^{239}_{95}Am$ _____

Name_____

Date

Balancing Nuclear Reactions

Directions: Complete the following nuclear equations so that they are balanced for both mass and nuclear charge.

- 1. ${}^{1}_{1}H + {}^{3}_{1}H \rightarrow ___$
- 2. ${}^{27}_{13}Al + {}^{4}_{2}He \rightarrow {}^{30}_{15}P + _$
- 3. ${}^{37}K \rightarrow {}^{0}_{+1}e + _$
- 4. _____ + ${}^{1}_{0}n \rightarrow {}^{142}_{56}Ba + {}^{91}_{36}Kr + {}^{31}_{0}n$
- 5. $^{240}_{94}Pu \rightarrow ___+ {}^{0}_{0}\gamma$
- 6. ${}^{51}_{24}Cr + ___ \rightarrow {}^{51}_{23}V$

Directions: Write a balanced equation for each of the following nuclear changes. You must supply the missing product in each equation.

- 7. Uranium-238 emits an alpha particle.
- 8. Four hydrogen-1 nuclei combine and release two positrons.
- 9. The decay of ${}^{53}_{26}Fe$ by beta emission.
- 10. Write the balanced nuclear equation for the fusion reaction between a lead-208 nucleus and an iron-58 nucleus. One of the two products is a neutron.

2

Name_____

Date	
------	--

Nuclear Chemistry Concepts

Directions: Match the following descriptions with the correct term.

- 1. A procedure that uses positrons to detect many different medical disorders
- 2. A unit used to measure the amount of radiation absorbed by the body
- 3. The annual amount of radiation to which a person is normally exposed
- ____4. A unit used to measure the amount of damage done to a body
- 5. Used to approximate the age of an object using the half-life of radioactive isotopes
- _____6. Used in radiation therapy for cancer patients
- _____7. Used in smoke detectors
- _____8. Shows cross-sectional views of the body
- _____9. A unit used to express gamma radiation in the air

- a. rad
- b. CAT scans
- c. Roentgen
- d. radioactive dating
- e. 100–300 mrem
- f. rem
- g. Cobalt-60
- h. Americium-241
- i. PET

Directions: Determine if each item pertains to alpha (α), beta (β), or gamma (γ) radiation.

- _____1. Carries an electric charge of 0
- _____2. Heaviest of the three particles
- _____3. Electrons
- _____4. No mass
- _____5. Not blocked by lead or concrete
- _____6. Carries an electric charge of 2+
- _____7. Blocked by paper
- _____8. Blocked by metal foil
 - 9. Photons
- _____10. ⁴₂He

Directions: Determine if each item pertains to fusion, fission, or both.

- _____1. Breaking apart of a large nucleus
- _____2. Used in nuclear weapons
- _____3. Used in nuclear power plants
- 4. Nuclei combine to form a larger stable nucleus
- _____5. Energy is released
- _____6. Doesn't produce radioactive waste
 - _____7. Requires high pressure and temperature to occur

3

Unit 11 Nuclear Chemistry HW Packet	Unit 11	Nuclear	Chemistry	/ HW	Packet
-------------------------------------	---------	---------	-----------	------	--------

Name_____

Date

Half-Life Practice

Directions: Solve the following half-life problems.

- Carbon-14 has a half-life of 5730 years. How much of a 500g sample would be left after 22,920 years? _____ How many half-lives will have occurred when the sample is 125g? _____
- Iodine-131 has a half-life of 8.07 days and is used to treat thyroid problems. After 24.21 days, how much of a 200g sample will be left? _____ How many days will it take until the sample is only 6.25g? _____
- 3. Polonium-216 takes 0.16 seconds for half of any sample to decay. You have a 5000kg sample of polonium-216 that has been "around" for 1 min 4 sec. How much actual polonium-216 is in your sample?
- 4. The half-life of thorium-234 is 24.1 days. How much time must pass for one-eighth of a given amount of this radioactive isotope to remain? ______
- 5. The half-life of ^{232}Th is 1.4×10^{10} years. If there are 25.0g of the sample left after 2.8×10^{10} years, how many grams were in the original sample?
- 6. There are 5.0g of ${}^{131}I$ left after 40.35 days. How many grams were in the original sample if its half-life is 8.07 days?