What is Thermodynamics?

Almost all chemical reactions involve a \qquad between the \qquad and its \qquad .
Thermo = \qquad
Dynamics = \qquad
What is energy?

What is heat?

Thermochemistry - \qquad
Heat is absorbed:
Heat is evolved/released: \qquad

Measuring Heat Transfer

Heat (q) flows from \qquad to \qquad
Heat is measured in \qquad calorie $=\ldots \quad \mathrm{J}, 1 \mathrm{kcal}=$ \qquad cal = \qquad food calorie (Cal)

Examples:

1. A fruit and oatmeal bar contains 142 Calories. Convert this energy to calories.
2. Convert 256 J to kcal.
3. The breakfast I at this morning contains 230 nutritional Calories. How much energy in joules will this breakfast supply?

Temperature vs. Heat

									Temperature	Heat	Thermal (Heat) Energy
Definition											

Temperature measures \qquad
The ___________ the molecules are moving, the the temperature
The molecules are moving, the ternperature
Example: Compare and contrast the temperature and thermal energy of the Pacific Ocean to a boiling pot of water

Enthalpy and Reactions

Enthalpy ($\Delta \mathrm{H}$) -
Formula:

Each reaction will have an enthalpy value $(\Delta \mathrm{H})$, which indicates \qquad

If $\Delta \mathrm{H}$ is negative then

\qquad
Reactions that release heat are called \qquad (exo = out, exiting).

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g}) \quad \Delta \mathrm{H}=-185,000 \mathrm{~J}
$$

If ΔH is positive then
Reactions that require an input of energy (heat) are called \qquad (endo $=\mathrm{in}$, entering).

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=890,000 \mathrm{~J}
$$

To determine if a reaction is exothermic or endothermic you must know the value of $\Delta \mathrm{H}$.

Example: Rewrite the following equations including the $\Delta \mathrm{H}$ value as a reactant or product and if it is exothermic or endothermic

$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$	$\Delta \mathrm{H}=-241.8 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}$	$\Delta \mathrm{H}=241.8 \mathrm{~kJ}$

\qquad
$\Delta \mathrm{H}=241.8 \mathrm{~kJ}$ \qquad
Enthalpy is an extrinsic physical property because it depends on the amount present!
Example: Determine the $\Delta \mathrm{H}$ for the following reactions:

$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$	$\Delta \mathrm{H}=-91.8 \mathrm{~kJ}$
$1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$	$\Delta \mathrm{H}=\square \mathrm{kJ}$
$2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$	$\Delta \mathrm{H}=\square \mathrm{kJ}$

Phase Changes

Phase Change:

To change phases,

	States of matter	Energy	Endo or Exo?	$\mathbf{\Delta H}$ Sign
Melting				
Freezing/Solidification				
Evaporation				
Condensation				

Let's Review!

Kinetic Energy:

Potential Energy:

During a phase change, temperature \qquad
Because kinetic energy \qquad depending on the \qquad
What does heat do?
If a substance is heated, the heat can do ONE of these two things:

1. \qquad OR
2.

KEY IDEA: \qquad

Label the following heating curve!

HEAT ADDED

Definition	Sign and Energy Movement	
$\Delta H_{\text {fusion }}$		
$-\Delta H_{\text {fusion }}$		
$\Delta H_{\text {vaporization }}$		
$-\Delta \mathrm{H}_{\text {vaporization }}$		

Summary

Solid $\xrightarrow{\Delta \mathrm{H} \text { fusion }}$ Liquid $\xrightarrow{\Delta \mathrm{H} \text { vaporizaion }}$ Gas

Solid $\stackrel{-\Delta H \text { fusion }}{\longleftarrow}$ Liquid $\stackrel{-\Delta H \text { vaporizaion }}{ }$ Gas

Phase Change Problems

The equation used to calculate the amount of energy absorbed or released during a phase change is

$$
q=m \Delta H
$$

Depending on the phase change, you will use either $\Delta H f u s$ or $\Delta H v a p$.
Example 1: Calculate the heat required to melt 25.7 g of solid water at its melting point.

Example 2: How much heat is evolved when 275 go of water vapor condenses to a liquid at its boiling point?

Specific Heat (C_{p})

Specific Heat:

Units for Specific Heat $=\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
Which has a higher specific heat:
Water or sand?

Metal pan or oven mitts?

Equation to use for thermal processes:

Heat:	Mass:		Specific heat:
			Change is temperature:

Example 1: How much heat is lost when 4110 g of aluminum metal cools from $660 .{ }^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$?

Example 2: Calculate the heat required to heat up 124 g of water from $17.5^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$.

Example 3: How much heat is required to heat 15.8 g of liquid water at $30 .{ }^{\circ} \mathrm{C}$ to water vapor at $122^{\circ} \mathrm{C}$?

Example 4: How much heat is released when 21.2 g of water cools from $113.7^{\circ} \mathrm{C}$ to $-24.8^{\circ} \mathrm{C}$?

Calorimetry:

This process uses a calorimeter, which is used

One kind of calorimeter works like this:
A known amount of or reactants are sealed in a reaction chamber.
The reaction chamber is immersed in a known quantity of water
The water and reaction chamber are in an insulated vessel
The energy given off (or absorbed) during the reaction is transferred to the water
If the reaction released energy the water temperature increases
If the reaction needs energy the water temperature decreases.
Heat is not measured directly.
Temperature is measured.
Temperature is affected by the transfer of heat (energy).

Calorimetry Problems:

Since heat is transferred, the following equation is used:

$$
\mathrm{q}_{\text {lost }}=-\mathrm{q}_{\text {gained }}
$$

Example: A 20.0 g piece of metal at a temperature of $90.0^{\circ} \mathrm{C}$ is dropped into an insulated container holding 125 g of water at $20.0^{\circ} \mathrm{C}$. If the final temperature is $23.0^{\circ} \mathrm{C}$, what is the specific heat capacity of the metal?

Hess's Law

Definition:

Key Ideas:

- The major utility of Hess's Law is in calculating the enthalpy changes of reactions that would be difficult to measure.
- Note: according to the law of conservation of energy, energy cane neither be created nor destroyed in an ordinary chemical reaction. Hess's law tells us that we will never get more energy (or less energy for that matter) from a chemical reaction.

Example: Calculate the $\Delta \mathrm{H}$ for the following reaction using the information given.

	$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}=-890.8 \mathrm{~kJ} / \mathrm{mol}$

Entropy

Entropy ($\Delta \mathrm{S}$) -

The Law of Disorder -

Example: Which of the following represents more disorder?
a) Increasing temperature or decreasing temperature of a substance
b) Reactants or products in the following reaction: $2 \mathrm{NH} 3(\mathrm{~g}) \rightarrow \mathrm{N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g})$
c) Ice or water or steam

Example: Predict the sign of $\Delta \mathrm{S}_{\text {system }}$ for each of the following changes.
a) $\mathrm{ClF}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g}) \quad \Delta \mathrm{S}=$
b) $\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq}) \quad \Delta \mathrm{S}=$
c) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq}) \quad \Delta \mathrm{S}=$
d) $\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{I}) \rightarrow \mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s}) \quad \Delta \mathrm{S}=$

Entropy and the phases of matter:

Place the phases of matter in order of increasing entropy:

The Driving Forces of Reaction

There are two factors that determine whether a reaction will occur spontaneously.

1. \qquad $(\Delta \mathrm{H})$ - measure of amount of heat absorbed/released in a chemical reaction The tendency in nature \rightarrow
2. \qquad (ΔS) - the measure of randomness of the particles in a system The tendency in nature \rightarrow

3. Gibb's Free Energy -

Negative $\Delta \mathrm{G}$ means the reaction is \qquad
Positive $\Delta \mathrm{G}$ means the reaction is \qquad

The tendency in nature \rightarrow
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{T}=$ Kelvin Temperature
Example: Predict the value of $\Delta \mathrm{G}$ and spontaneity of a reaction using the following data:

$\Delta \mathbf{H}$	$\Delta \mathbf{S}$	$\Delta \mathbf{G}$	Spontaneous?
+	+		
-	-		
+	-		
-	+		

Example: Is the following spontaneous?

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})+\text { heat } \rightarrow \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

Kinetics - The Reaction Process

According to collision theory, in order to react, particles must collide with
a)
b)

Many reactions actually take place through a series of steps involving two particle collisions. This step by step sequence is called a
\qquad _.

Example:
For

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

Step 1:
$\mathrm{I}_{2} \leftrightarrow 2 \mathrm{I}^{-}$

Step 2: $\quad \quad 2 I^{-}+\mathrm{H}_{2} \leftrightarrow 2 \mathrm{HI}$

Potential Energy Diagram

Label the following potential energy diagram:

The forward reaction is \qquad
The reverse reaction is \qquad

What is Chemical Kinetics?
\qquad

Factors that affect the rate of reaction:

a) Nature of the reactants
b) Surface area
c) Temperature
d) Concentration
e) Catalysts

What is a catalyst?

Draw a potential energy diagram with a catalyst included:

What is Chemical Equilibrium? -

\qquad

Reversible Reaction - (\leftrightarrow)
Equilibrium can only be established if the reaction is reversible. Is equilibrium DYNAMIC or STATIC? Explain:

Equilibrium Expression:

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \leftrightarrows \mathrm{cC}+\mathrm{dD} \\
& K e q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{aligned}
$$

The Equilibrium Constant - Keq
Definition: \qquad

This is the formula for the equilibrium expression:

1) Ignore all pure solids and pure liquids in the reaction. (Why?) Only the concentrations of substances that can actually change are included in K. This means that pure solids and liquids are omitted because their concentrations cannot change.
2) Make a ratio of [products] / [reactants]

The concentrations are all expressed as Molarity ($\mathrm{mol} / \mathrm{L}$)
3) Make all coefficients in the balanced chemical equation into exponents in the ratio.

$$
\text { Keq }=\frac{[C]^{C}[D]^{d}}{[A]^{d}[B]^{b}}
$$

Try it!
Find the Equilibrium Expression for the following:

1. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
2. $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longleftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
4. $\quad \mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
5. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (I)

Setting Up and Calculating the Equilibrium Constant

Example 1: The following equilibrium concentrations were observed for the Haber process at $127^{\circ} \mathrm{C}$. The Haber process is: $\mathrm{N}_{2}(\mathrm{~g})+$ $3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate ' K '.
$\left[\mathrm{NH}_{3}\right]=2.0 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{N}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{H}_{2}\right]=2.0 \mathrm{~mol} / \mathrm{L}$

Example 2: A different experiment was performed using the same process (Haber) as above and at the same temperature, but different concentrations. Calculate ' K '. $\left[\mathrm{NH}_{3}\right]=0.86 \mathrm{~mol} / \mathrm{L}$,
$\left[\mathrm{N}_{2}\right]=0.75 \mathrm{~mol} / \mathrm{L}$,
$\left[\mathrm{H}_{2}\right]=1.25 \mathrm{~mol} / \mathrm{L}$

Why are the values for ' K ' the same between the two problems?
Because the value for ' K ' is a constant for a given reaction at a given temperature. The only way to change ' K ' for a given reaction is to change the temperature.

Interpretation of Keq

If $\mathrm{Keq}=1$, then \qquad
If $\mathrm{Keq}<1$, then \qquad
If $K e q>1$, then \qquad
Other Equilibrium Expressions
Ionization of an Acid Ka
a) How does Ka relate to the strength of an acid?
b) Set up the equilibrium expression for the following reaction:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

```
Ка =
```


Ionization of a Base

K_{b}

Set up the equilibrium expression for the following reaction:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\mathrm{Kb}=
$$

$\mathrm{K}_{\text {sp }}$
a) How does Ksp relate to the solubility of a salt?
b) Set up the equilibrium expression for the following reaction:

$$
\mathrm{AgCl}(\mathrm{~s}) \leftrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Le Chatelier's Principle -

3 Stresses for an Equilibrium System

1.
2.
3.

> KEY - Remember to predict the direction of equilibrium shift, use AITD (्Away from Increase, Iowards a Decrease)

Changing Concentration:

Try it!

$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
What happens to the reaction if you increase the concentration of N_{2} ?
$2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Describe what happens when:
You decrease SO_{2}

Changing Temperature:

Where is heat added for an endothermic reaction?

Where is heat added for an exothermic reaction?

Keq is only affected by a \qquad change

Treat heat the same way you do concentration changes. If temperature increases, heat increases!

Temperature Examples:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
What happens to the reaction if you increase the temperature?
$2 \mathrm{SO}_{3}(\mathrm{~g})+$ heat $\leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) Increase the temperature
b) Decrease the temperature

Changing Pressure

*Only affects equilibrium reactions with \qquad _.
*When you increase pressure (
) you want \qquad in your system
*When you decrease pressure () you want to \qquad in your system.
When you increase pressure it always shifts toward \qquad of gas.
When you decrease pressure it always shifts toward \qquad of gas.

Pressure Examples:

$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
a) Increase the pressure
b) Decrease the pressure
$2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) Increase the pressure
b) Decrease the pressure

More Practice

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrow \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=215.5 \mathrm{~kJ} / \mathrm{mol}$

Stress	Shift	$\left[\mathrm{CH}_{4}\right]$	$\left[\mathrm{H}_{2} \mathbf{S}\right]$	$\left[\mathrm{CS}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$	Keq
Increase CS_{2}						
Decrease H_{2}						
Increase Temp						
Increase Pressure						

