Unit 10 Thermodynamics, Kinetics and Equilibrium Notes

What is Thermodynamics?	
Almost all chemical reactions involve a	_ between the and its
Thermo =	
Dynamics =	
What is energy?	
What is heat?	
Thermochemistry	
Heat is absorbed:	
Heat is evolved/released:	
Measuring Heat Transfer	
Heat (q) flows from to	
Heat is measured in	·
J =kJ,calorie =J, 1 kcal =	cal = food calorie (Cal)
Examples:	

- 1. A fruit and oatmeal bar contains 142 Calories. Convert this energy to calories.
- 2. Convert 256 J to kcal.
- 3. The breakfast I at this morning contains 230 nutritional Calories. How much energy in joules will this breakfast supply?

Temperature vs. Heat

Temperature	Heat	Thermal (Heat) Energy
	Temperature	Temperature Heat

Temperature measures ______

The	the molecules are moving, the	the temperature
The	the molecules are moving, the	the temperature

Example: Compare and contrast the temperature and thermal energy of the Pacific Ocean to a boiling pot of water

Each reaction will have	an enthalpy value (Δ H), which indi	cates		
If ΔH is negative then _				
Reactions that	release heat are called		exo = out, exiting).	
$H_2(g) + Cl_2(g) -$	→ 2HCl(g) ΔH = -185,00	0 1		
If ΔH is positive then _		·		
Reactions that	require an input of energy (heat) a	are called	(endo = in, ente	ering).
CO ₂ (g) + 2H ₂ O($(g) \rightarrow 2O_2(g) + CH_4(g) \qquad \Delta H = 890,$	000 J		
To determine if a reacti	on is exothermic or endothermic y	ou must know the value o	of ∆H.	
Example: Rewrite the f	ollowing equations including the Δ	.H value as a reactant or p	product and if it is exotherm	ic or endothermic
12 + 72 O2 7 1120	ΔΠ = -241.0 KJ			
$H_2O \rightarrow H_2 + \frac{1}{2}O_2$	ΔH = 241.8 kJ			_
Enthalpy is an extrinsic	physical property because it deper	nds on the amount preser	nt!	
Example: Determine th	e ΔH for the following reactions:			
$N_2 + 3H_2 \rightarrow 2NH_3$	∆H= -91.8 kJ			
⁄₂ N₂ + 3/2 H₂ → NH₃	ΔH = kJ			
$2NH_3 \rightarrow N_2 + 3H_2$	ΔH = kJ			
Phase Changes				
To change pha	ises,			
	States of matter	Energy	Endo or Exo?	∆H Sign
Melting				
Freezing/Solidification	n l			

Let's Review! Kinetic Energy:

Evaporation

Condensation

Potential Energy:

HEAT ADDED

	Definition	Sign and Energy Movement	
ΔH_{fusion}			
- ΔH_{fusion}			
$\Delta H_{vaporization}$			
- ΔH vaporization			

Summary

Solid $\xrightarrow{\Delta H \text{ fusion}} \text{Liquid} \xrightarrow{\Delta H \text{ vaporization}} \text{Gas}$

Solid $\leftarrow \frac{-\Delta H \text{ fusion}}{-\Delta H \text{ vaporization}}$ Gas

Phase Change Problems

The equation used to calculate the amount of energy absorbed or released during a phase change is

q = m∆H

Depending on the phase change, you will use either Δ Hfus or Δ Hvap.

Example 1: Calculate the heat required to melt 25.7 g of solid water at its melting point.

Specific Heat (C_p)

Specific Heat: _____

Units for Specific Heat = $J/g \cdot C$

Which has a higher specific heat: Water or sand?

Metal pan or oven mitts?

Equation to use for thermal processes:

q = mCpΔT

Heat:
Mass:
Specific heat:
Change is temperature:

Image: start of the st

Example 1: How much heat is lost when 4110 g of aluminum metal cools from 660.°C to 25.0°C?

Example 2: Calculate the heat required to heat up 124 g of water from 17.5°C to 25.0°C.

Example 3: How much heat is required to heat 15.8 g of liquid water at 30.°C to water vapor at 122°C?

Example 4: How much heat is released when 21.2 g of water cools from 113.7°C to -24.8°C?

One kind of calorimeter works like this:

A known amount of or reactants are sealed in a reaction chamber. The reaction chamber is immersed in a known quantity of water The water and reaction chamber are in an insulated vessel The energy given off (or absorbed) during the reaction is transferred to the water If the reaction released energy the water temperature increases If the reaction needs energy the water temperature decreases. Heat is not measured directly. Temperature is measured. Temperature is affected by the transfer of heat (energy).

Calorimetry Problems:

Since heat is transferred, the following equation is used:

 $q_{lost} = -q_{gained}$

Example: A 20.0 g piece of metal at a temperature of 90.0°C is dropped into an insulated container holding 125 g of water at 20.0°C. If the final temperature is 23.0°C, what is the specific heat capacity of the metal?

<u>Hess's Law</u>

Definition: _____

Key Ideas:

- The major utility of Hess's Law is in calculating the enthalpy changes of reactions that would be difficult to measure.
- Note: according to the law of conservation of energy, energy cane neither be created nor destroyed in an ordinary chemical reaction. Hess's law tells us that we will never get more energy (or less energy for that matter) from a chemical reaction.

Example: Calculate the ΔH for the following reaction using the information given.

	$C(s) + 2 H_2(g) \rightarrow CH_4(g)$	
$C(s) + O_2(g) \rightarrow CO_2(g)$		∆H = -393.5 kJ/mol
H ₂ (g) + ½ O ₂ (g) → H ₂ O(I)		Δ H = -285.8 kJ/mol
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$		∆H = -890.8 kJ/mol

<u>Entropy</u> Entropy (∆S) –

The Law of Disorder –

Example: Which of the following represents more disorder?

- a) Increasing temperature or decreasing temperature of a substance
- b) Reactants or products in the following reaction: $2NH3(g) \rightarrow N2(g) + 3H2(g)$
- c) Ice or water or steam

Example: Predict the sign of ΔS_{system} for each of the following changes.

- a) $CIF(g) + F_2(g) \rightarrow CIF_3(g)$ $\Delta S =$
- b) $NH_3(g) \rightarrow NH_3(aq)$ $\Delta S =$
- c) $CH_3OH(I) \rightarrow CH_3OH(aq)$ $\Delta S =$
- d) $C_{10}H_8(I) \rightarrow C_{10}H_8(s)$ $\Delta S =$

Entropy and the phases of matter:

Place the phases of matter in order of increasing entropy:

The Driving Forces of Reaction

There are **two factors** that determine whether a reaction will occur **spontaneously**.

1. (ΔH) – measure of amount of heat absorbed/released in a chemical reaction

The tendency in nature \rightarrow

2. (ΔS) – the measure of randomness of the particles in a system

The tendency in nature \rightarrow

3. Gibb's Free Energy -

Negative ΔG means the reaction is _____ Positive ΔG means the reaction is _____

The tendency in nature \rightarrow

 $\Delta G = \Delta H - T\Delta S$ T = Kelvin Temperature

Example: Predict the value of ΔG and spontaneity of a reaction using the following data:

Δн	ΔS	ΔG	Spontaneous?
+	+		
-	-		
+	-		
-	+		

Example: Is the following spontaneous?

 $NH_4NO_3(s) + heat \rightarrow NO_3(aq) + NH_4(aq)$

Kinetics - The Reaction Process

According to collision theory, in order to react, particles must collide with

a)

b)

Many reactions actually take place through a series of steps involving two particle collisions. This step by step sequence is called a

Example:	For	$H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$
	Step 1:	$I_2 \leftrightarrow 2I^-$
	Step 2:	$2I^{-} + H_{2} \leftrightarrow 2HI$

Potential Energy Diagram

Label the following potential energy diagram:

Factors that affect the rate of reaction:

- a) Nature of the reactants
- b) Surface area
- c) Temperature
- d) Concentration
- e) Catalysts

What is a catalyst?

Draw a potential energy diagram with a catalyst included:

What is Chemical Equilibrium? - _____

<u>Reversible Reaction</u> – (\leftrightarrow) Equilibrium can only be established if the reaction is reversible. Is equilibrium DYNAMIC or STATIC? Explain:

This is the formula for the equilibrium expression:

- 1) Ignore all pure solids and pure liquids in the reaction. (*Why?*) Only the concentrations of substances that can actually change are included in K. This means that pure solids and liquids are omitted because their concentrations cannot change.
- 2) Make a ratio of [products] / [reactants] The concentrations are all expressed as Molarity (mol/L)
- 3) Make all coefficients in the balanced chemical equation into exponents in the ratio.

$$Keq = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Try it!

Find the Equilibrium Expression for the following:

- 1. $N_2O_4(g) \leftrightarrow 2NO_2(g)$
- 2. $CO(g) + 3H_2(g) \leftrightarrow CH_4(g) + H_2O(g)$
- 3. $Ca(OH)_2(s) + H_2O(I) \leftrightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$
- 4. $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$
- 5. $2H_2(g) + O_2(g) \leftrightarrow 2H_2O(I)$

Setting Up and Calculating the Equilibrium Constant

Example 1: The following equilibrium concentrations were observed for the Haber process at 127°C. The Haber process is: $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$. Calculate 'K'.

[NH₃] = 2.0 mol/L [N₂] = 1.0 mol/L [H₂] = 2.0 mol/L

Example 2: A different experiment was performed using the same process (Haber) as above and at the same temperature, but different concentrations. Calculate 'K'. [NH₃] = 0.86 mol/L, [N₂] = 0.75 mol/L, [H₂] = 1.25 mol/L

Why are the values for 'K' the same between the two problems?

Because the value for 'K' is a constant for a given reaction at a given temperature. The only way to change 'K' for a given reaction is to change the temperature.

Interpretation of Keq

If Keq = 1, then	
If Keq < 1, then	
If Keq > 1, then	
Other Equilibrium Expressions	

Ionization of an Acid K_a

a) How does Ka relate to the strength of an acid?

b) Set up the equilibrium expression for the following reaction:

 \mathbf{K}_{b}

 $CH_3COOH(aq) + H_2O(I) \leftrightarrow H_3O^+(aq) + CH_3COO^-(aq)$

Ionization of a Base

Set up the equilibrium expression for the following reaction:

$$NH_3(aq) + H_2O(I) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

Solubility of a Slightly Soluble Salt K_{sp}

- a) How does Ksp relate to the solubility of a salt?
- b) Set up the equilibrium expression for the following reaction:

 $AgCl(s) \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$

so glad are over!				
	-			

3 Stresses for an Equilibrium System

1.

2.

3.

KEY – Remember to predict the direction of equilibrium shift, use **AITD** (<u>A</u>way from <u>I</u>ncrease, <u>T</u>owards a <u>D</u>ecrease)

Changing Concentration:

Try it!

 $N_{2(g)} + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$ What happens to the reaction if you increase the concentration of N_2 ?

 $2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$ Describe what happens when: You decrease SO_2 Ka =

Kb =

Ksp =

Le Chatelier's Principle -

Changing Temperature:

Where is heat added for an endothermic reaction?

Where is heat added for an **exothermic** reaction?

Keq is only affected by a_____ change

Treat heat the same way you do concentration changes. If temperature increases, heat increases!

<u>Temperature Examples:</u> $N_{2(g)} + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$ What happens to the reaction if you increase the temperature?

$2SO_3(g) + heat \leftrightarrow 2SO_2(g) + O_2(g)$

a) Increase the temperature

b) Decrease the temperature

Changing Pressure

*Only affects equilibrium reactions with	h	
*When you increase pressure () you want	in your system
*When you decrease pressure () you want to	in your system.
When you increase pressure it always s	shifts toward	of gas.
When you decrease pressure it always	shifts toward	of gas.

Pressure Examples:

 $N_{2(g)} + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$

a) Increase the pressure

b) Decrease the pressure

$2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$

- a) Increase the pressure
- b) Decrease the pressure

More Practice

 $CH_4(g) + 2H_2S(g) \leftrightarrow CS_2(g) + 4H_2(g)$ $\Delta H = 215.5 \text{ kJ/mol}$

Stress	Shift	[CH ₄]	[H ₂ S]	[CS ₂]	[H ₂]	K _{eq}
Increase CS ₂						
Decrease H ₂						
Increase Temp						
Increase Pressure						