Thermodynamics

"I blame entropy."

Name

Test Date

Thermodynamics Vocabulary

Terms	Definition
Energy	
Potential Energy	
Kinetic Energy	
Law of conservation of energy	
Chemical potential energy	
Thermochemistry	
Heat	
Calorie	
Joule	
Temperature	
Thermal Energy	

Heat Conversion Factors
Memorize
These!

Try It: Practice Problems1) A fruit and oatmeal bar contains 142 Calories. Convert this energy to calories.

2) If an endothermic process absorbs 256 J, how many kilocalories are absorbed?

3) The breakfast I ate this morning contains 230 nutritional Calories. How much energy in joules will this breakfast supply?

Heat Vs Temperature <u>*Thermal Energy:*</u> Definition: Units:

<u>Heat</u> Definition: Units:

<u>Temperature:</u> Definition: Units:

ENTHALPY

Definition: Symbol:

Endothermic vs Exothermic

Endothermic: Definition: Sign of Δ H:

Exothermic: Definition: Sign of Δ H:

Label the following reactions as exothermic or endothermic:

$\mathrm{H}_2 + \frac{1}{2} \mathrm{O}_2 \xrightarrow{} \mathrm{H}_2 \mathrm{O}$	$\Delta H = -241.8 kJ$
$H_2O \rightarrow H_2 + \frac{1}{2}O_2$	$\Delta H = 241.8 kJ$

Rewrite the equations above including the ΔH value as a reactant or product.

Try these! $4Fe + 3O_2 \rightarrow 2Fe_2O_3$ $\Delta H = -1625kJ$

 $NH_4 + NO_3 \rightarrow NH_4NO_3 \qquad \Delta H = +27 \text{ kJ}$

Changes of State Heat of vaporization:

Heat of fusion:

Formulas:

 $\begin{array}{l} q = \\ m = \\ \Delta H_{\rm f} = \\ \Delta H_{\rm f} = \end{array}$

***During a phase change, temperature	
because kinetic energy	and
potential energy	

Try It: Practice Problems

- 1) Calculate the heat required to melt 25.7 g of solid water at its melting point.
- 2) How much heat is evolved when 275 g of water vapor condenses to a liquid at its boiling point?

Specific Heat: Definition:

Formula (label the parts as well):

Try it! Which has a higher specific heat? Why?

- Water or sand
- Metal pan or oven mitts

Try it:

1) How much heat is lost when 4110 g of aluminum cools from 660°C to 25.0°C?

q	
m	
C _p	
T _f	
T _i	
Work:	

Answer:_____

2) How much heat is required to increase the temperature of 124 g of water from 17.5°C to 45.8°C?

q	
m	
C _p	
T _f	
T _i	
TT 7 1	

Work:

Calorimeter/Calorimetry Definition:

Formula:

Try it:

A 20.0 g piece of metal at a temperature of 90.0°C is dropped into an insulated container holding 125 g of water at 20.0°C. If the final temperature is 23.0°C, what is the specific heat of the metal?

Heating/Cooling Curve Label the heating curve below!!!!

Which numbers on the heating curve show a change in kinetic energy?

Which numbers show a change in potential energy?

Review: Exothermic or endothermic?

- a) Condensation
- b) Melting
- c) Freezing
- d) Boiling
- e) Sublimation (s \rightarrow g)
- f) $\Delta H = -13.6J$
- g) $A + B + 159.8 J \rightarrow C + D$

Entropy

Definition:

Variable and unit:

Law of Disorder:

From each group, select the part with the highest entropy:

a) Increasi	ing temp	erature	or	dec	reasing temperatur	re
b) Reactar	nts or Pro	oducts	2NH ₃ ((g) →	• $3H_2(g) + N_2(g)$	
c) ice	or	water	(or	steam	

What are the states of matter from lowest entropy to highest entropy?

When S is	that means entropy is	S
When S is	_ that means entropy is	
Predict the change in $CIF(g) + F_2(g) \rightarrow CII$ $NH_3(g) \rightarrow NH_3(aq)$ $CH_2OH(1) \rightarrow CH_2OH$	e entropy: F ₃ (g)	
$C_{10}H_8(l) \rightarrow C_{10}H_8(s)$	I(aq)	