Quantum Theory

will be answered in random order."

Test Date

Quantum Theory

Light: Is it a wave or particle?

Wave Properties:

Velocity: ()

Frequency: ()

Wavelength: ()

Amplitude: ()

Answer the following using the EM spectrum in your reference table 1) Which type of wave has the greatest frequency?

- 2) In the visible spectrum, which color has the lowest energy?
- 3) Between x-rays and microwaves, which one has the highest frequency?

A	
в	\frown
с	
Analyze the pi wavelength.	ctures above in regards to energy, frequency and
Direct relationsh Inverse relations	E vs. λ vs. v nip ship
Terms to know:	
Term	Definition
Ground State	
Excited State	
Quantum	
Photon	

Light as a Particle

The Photoelectric Effect: _____

Bohr Model of the Atom Useful only for the element Assumptions: 1.		
2.		
3.		
Bohr Model Formula: n= Na- S-	 Br-	
Draw the Bohr Models Na:		
Ne:		
*Electrons move from the	_ when they absorb energy.	_ to They then
and release a	to the	
Draw it:		

Atomic Emission Spectrum:

Absorption Spectrum:

Spectroscopy:

Define It:

Try It: *using the Bohr Diagram* 1)

2)

3)

Orbital Diagrams and Electron Configuration:

<u>Orbitals</u>: 3-D region where electrons are located <u>Sublevels</u>: energy level in which the orbitals are located

Sublevels - # of Orbitals and Electrons

s Sublevel –

p Sublevel –

d Sublevel -

f Sublevel –

Each orbital can only hold a maximum of _____!

Rules for Determining Electron Configuration/Orbital Notation: 1)

2)

3)

Electron Configuration

Important Rules with the "d" and "f" block

Example:	Cu	
Example:	Hg	
Example:	Bi	
Example:	Au	
<i>Noble Gas Electron Configuration</i> This is a short-hand version of electron configuration		
$\frac{Format}{X} = nc$	[X] bble gas that comes directly before the element	

numerically

.... = the rest of the electron configuration from that noble gas to the element

Example: Cu Example: Hg Example: Bi Example: Au

Orbital Diagrams: Element: _____

Orbital Diagrams: Element: _____

Dot Diagrams

This represents the amount of valence electrons for the element

Valence electrons:

These are represented as dots around the element with only 2 dots allowed per side of the element symbol.

The maximum amount of valence electrons = _____

Example: Cu Example: Hg Example: Bi Example: Au