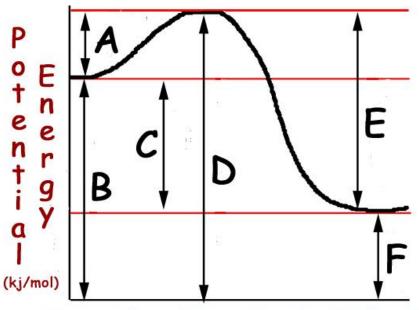

Kinetics and Equilibrium

Name____

Test Date____

Collision Theory


Assumptions of the Collision Theory:

- 1)
- 2)
- 3)

Factors that Affect Reaction Rates

- 1) Nature of Reactants:
- 2) Concentration
- 3) Surface Area
- 4) Temperature
- 5) Catalyst

Label the parts of a potential energy diagram:

Reaction Coordinate (Time)

Draw an endothermic Potential Energy Diagram:
Draw a potential energy diagram with a catalyst added:
Equilibrium
Terms to know: Reversible Reaction:

Chemical Equilibrium:

Is the Potential Energy Diagram above exothermic or endothermic?

Law of Chemical Equilibrium:

Equilibrium Constant Expression (K_{eq}) Definition: Generic reaction: Formula: Do not put ______ and _____ in the Keq equations! When Keq is > 1 ______ When Keq is <1 ______</td> Try It! Practice Problems 1) $N_2O_4(g) \leftrightarrow 2NO_2(g)$

2)
$$CO(g) + 3H_2(g) \leftrightarrow CH_4(g) + H_2O(g)$$

3)
$$Ca(OH)_2(s) + H_2O(1) \leftarrow Ca^{2+}(aq) + 2OH^{-}(aq)$$

4)
$$CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$$

5)
$$2H_2(g) + O_2(g) \leftarrow \rightarrow 2H_2O(l)$$

Le Chatelier's Principle:	
Types of Stress: 1) 2) 3)	
Changing Concentration:	
Try it! $N_{2(g)} + 3H_2(g) \longleftrightarrow 2NH_3(g) + \text{heat}$ What happens to the reaction if you	
$2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$ Describe what happens when: You decrease SO_2	
You increase O ₂	
Changing Temperature: Where is heat added for an endothe	ermic reaction?
Where is heat added for an exother	mic reaction?
Keq is only affected by a	change
Treat heat the same way you do con increases, heat increases!	centration changes. If temperature

Temperature Examples:

$$N_{2(g)} + 3H_2(g) \leftarrow \rightarrow 2NH_3(g) + heat$$

What happens to the reaction if you increase the temperature?

$$2SO_3(g) + heat \leftrightarrow 2SO_2(g) + O_2(g)$$

- a) Increase the temperature
- b) Decrease the temperature

Chan	ging	Pressure
CHAIL	D***D	ITODDUTE

*Only	affects	equilibrium	reactions	with	
-------	---------	-------------	-----------	------	--

*When you increase pressure () you want
in	vour system	

*When you decrease pressure () y	you want to

Pressure Examples:

$$\overline{N_{2(g)} + 3H_2(g)} \leftarrow \rightarrow 2NH_3(g) + heat$$

- a) Increase the pressure
- b) Decrease the pressure

$$2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$$

- a) Increase the pressure
- b) Decrease the pressure

More Practice

 $CH_4(g) + 2H_2S(g) \leftrightarrow CS_2(g) + 4H_2(g) \\ \Delta H = 215.5 \text{ kJ/mol}$

Stress	Shift	[CH ₄]	[H ₂ S]	[CS ₂]	$[H_2]$	\mathbf{K}_{eq}
Increase CS ₂						
Decrease H ₂						
Increase Temp						
Increase Pressure						