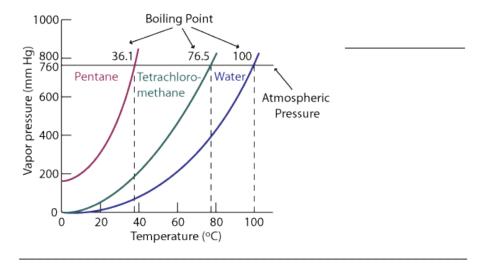

Gases and the KMT

Name	

Test Date_____

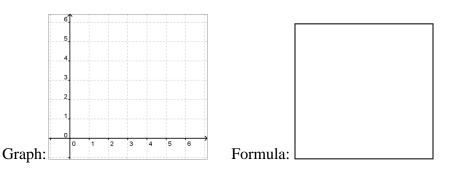
Gas Law


Vocabulary to know

Vocabulary to Know	
Terms	Definition
Pressure	
Barometer	
STP	
Absolute zero	
Gas Laws	
Expansion	
Density	
Fluidity	
Compressibility	
Diffusion	
Effusion	
volatile	
Non volatile	
Boiling/Vaporization	
Evaporation	

Units of Pressure

inetic Molecular Theory factors that affect the behavior of gases are		
ractors that affect the behavior of gases are		
ptions of the KMT:		
that are		
Collisions between particles are		_
astic collisions:		
Gas particles are in , rapid,		
motion and possess	())
There are of	or	
They behave like	·	
Kinetic energy depends upon		
	 -	
: Pressure Unit Conversion		
D.,,,,,,,,,		
rressure:		
	factors that affect the behavior of gases are ptions of the KMT: Gases consist of	factors that affect the behavior of gases are ptions of the KMT: Gases consist of


Vapor Pressure Curves: (explain the curve using the terms volatile, non-volatile, IMF)

The Gas Laws

Boyle's Law:		
Definition		

Relationship____

ry It:		
P ₁		
V_1		
P ₂		
\mathbf{V}_2		
Work:		
	Ar	swer:
P ₁		
$\frac{\mathbf{r}_1}{\mathbf{V}_1}$		
$egin{array}{cccc} & & \mathbf{v}_1 & & & \\ & & & \mathbf{P}_2 & & & \\ & & & & & \end{array}$		
$rac{1}{\mathbf{V}_2}$		
Work:		
	Ar	swer:
Charles Law:		
efinition		
elationship		
6		
5		
4		
3		
2		
1		
0		
Graph: 0 1 2 3 4 5	Formula:	

$\mathbf{V_1}$	
T_1	
V_2	
T_2	
Work:	
	•
T 7.	Answer:
$rac{V_1}{T_1}$	
$rac{11}{\mathbf{V}_2}$	
$\frac{v_2}{T_2}$	
Vork:	
VOIK.	
	Answer:
	Allswei.
av. I wasaa ala I avv.	
ay Luasaac s Law:	
efinition	
efinition	
efinition	
efinitionelationship	
5.	
elationship	

T_1	
P ₁	
T_2	
\mathbf{P}_2	
Work:	
	Answer:
T_1	
P ₁	
T ₂	
P ₂	
Work:	
	Answer:
Avogadro's Law	Answer:
Avogadro's Law Definition	Answer:
Avogadro's Law Definition	Answer:
Definition	Answer:
Avogadro's Law Definition Relationship	Answer:
Definition	Answer:
Definition	Answer:
DefinitionRelationship	Answer:

Try It!				
	\mathbf{V}_1			
	n 1			
	\mathbf{V}_2			
	n ₂			
Work:				
				Answer:
Mix it u Directio below.		ne law and so	lve the problem	m in the space
1) I	Law			
2) I	Law		-	
3) I	Law		-	
4) I	Law		_	
	ned Gas Law			
Formula	1:			

Try It!		
V ₁		
T ₁		
P ₁		
V_1		
P ₁		
T ₁		
Work:		
		Answer:
Try It!		
V_1		
T ₁		
P ₁		
\mathbf{V}_1		
P ₁		
T_1		
Work:		Answer:
Ideal Gas Law Definition		
Formula:		R is
	p V n	Use the units to help you determine the R value
	T	R=
	•	R=
	deal Gas Formula	D _

Try It:

P	
V	
n	
R	
T	
Work:	
	Answer:

The Following Table is being used for ammoia gas (NH_3)

Pressure	Volume	Temperature		Moles	Grams	R
						value
2.50 atm		0 °C			32.0 g	
			K			
kPa	75.0 mL	30 °C		.0226		
				mol		
			K			
768	6.0 L	100°C				
mmHg						
			K			
195 kPa	2.75 L				45.0 g	
			K			

Dalton's L	aw of Partial Pressures
Formula:	
Try It:	
-Collecting	Gas Over water:
Formula:	
Try It:	