Unit 9: Acids and Bases Notes

Introduction and Review

- 1. Define Acid:
- 2. Name the following acids:

HCl	H_2SO_4	H_2SO_3	H_2S
Bases usually contain Name the following bases:			
NaOH	Ca(OH) ₂	Cu(OH) ₂	NH4OH

Properties of Acids and Bases

- 1. List some properties of acids
- 2. List some properties of bases
- 3. Define indicator:
- 4. Common Acid/Base Indicators:

Indicator	Color in acid (pH < 7)	Color at pH = 7	Color in base (pH > 7)
Phenolphthalein			
Bromothymol Blue			
Red Litmus			
Blue Litmus			

- 5. Uses of Common Acids:
 - a. H_2SO_4
 - b. HNO₃
 - c. H₃PO₄
 - d. HCl
 - e. CH₃COOH (Acetic acid)
- 6. Uses of Common Bases:
 - a. Mg(OH)₂
 - b. NaOH
 - c. Ca(OH)₂
- 7. Why are acids and bases electrolytes?
- 8. Write an ionization equation for HBr
- 9. Write an ionization equation for NH₃

Acid/Base Strength

1. Explain the difference between concentration and strength.

- 2. Define strong acid/base:
- 3. Define weak acid/base:

4. Fill in the following tables and **MEMORIZE THEM**:

Acids		
Weak Acids		

Bases		
Strong Bases	Weak Bases	

- 5. How do you recognize an organic acid? Are they strong or weak?
- 6. Write the dissociation equations for KOH and Cu(OH)₂. How do strong and weak bases (or acids) differ?

Acid and Base Theories

Theory	Acid Definition	Base Definition
Arrhenius		
Bronsted-Lowry		

- 1. What happens when you mix an Arrhenius acid with an Arrhenius base?
- 2. General neutralization reaction:

- 3. Define salt:
- 4. Write the ionic and net ionic equations for the following neutralization reaction: LiOH(aq) + HBr(aq) \rightarrow LiBr(aq) + H₂O(l)
- 5. Name the salt produced and write the balanced reaction:
 - a. Sodium hydroxide and hydrochloric acid
 - b. Calcium hydroxide and sulfuric acid
 - c. Potassium hydroxide and nitric acid
- 6. Copy the Bronsted-Lowry reactions:
- 7. Define monoprotic acid and give examples:
- 8. Define polyprotic acid and give examples:
- 9. What is an amphoteric substance? Show equations as well.

Bronsted-Lowry Conjugate Acids and Bases

- 1. Define conjugate acid:
- 2. Define conjugate base:

3.	Label the acid, base, conjugate acid, an	d conjugate base in each of the following:
	a. $NH_3 + H_3O^+ \rightarrow NH_4^+ + H_2O$	c. $CH_3OH + NH_2^- \rightarrow CH_3O^- + NH_3$

b. $OH^- + H_3O^+ \rightarrow H_2O + H_2O$ d. $H_2O + NH_2^- \rightarrow OH^- + NH_3$

- 4. Write the conjugate base H₃O⁺ H₂SO₄ HCO₃⁻ HOCl NH₄⁺
 5. Write the conjugate acid
- I^{-} SO_{3}^{2-} PO_{4}^{3-} $C_{2}H_{3}O_{2}^{-}$ $H_{2}BO_{3}^{-}$
- 6. What is the relationship between strength and conjugates?

Ionization of Water

- 1. Pure water ionizes slightly according to the following equation:
- 2. The product of the concentrations (molarity) of the ions is equal to the constant K_w. Write the formula:
- 3. In **neutral** solutions:
- 4. In acidic solutions:
- 5. In **basic** solutions:

pH and pOH

- 1. What is pH? Write its scale.
- 2. What is pOH? Write its scale.

- 3. How do pH and [H⁺] relate?
- 4. What is the $[H^+]$ difference between a pH of 1 and a pH of 4?
- 5. Important formulas: $pH = -log[H_3O^+]$ $pOH = -log[OH^-]$ $[H_3O^+] = 10^{-pH}$ $[OH^-] = 10^{-pOH}$ pH + pOH = 14
- 6. Find the pH of the following:
 - a) $[H_3O^+] = 1.00 \times 10^{-3} M$
 - b) $[H_3O^+] = 6.59 \times 10^{-10} M$
 - c) $[H_3O^+] = 7.01 \times 10^{-6}M$
- 7. Find the $[H_3O^+]$ of the following:
 - a) pH = 3
 - b) pH = 6.61
 - c) pH = 2.52
- 8. Find the pH of the following:
 - a) pOH = 2
 - b) pOH = 1.26
 - c) pOH = 4.98
- 9. Find the pH of the solutions having following [OH⁻]:
 - a) $[OH^{-}] = 1.00 \text{ x } 10^{-11} \text{ M}$
 - b) $[OH^{-}] = 2.64 \text{ x } 10^{-13} \text{ M}$
 - c) $[OH^{-}] = 3.45 \times 10^{-8} M$

10. Find the [H₃O⁺]:

- a) $[OH^{-}] = 1.00 \times 10^{-6} M$
- b) $[OH^{-}] = 4.97 \times 10^{-10} M$
- c) $[OH^{-}] = 2.93 \times 10^{-2} M$
- 11. Find the pH of the following:d) 0.054 M HCl
 - e) 0.178 M NaOH
 - f) 0.033M H₂SO₄
 - g) 3.0 M HF (8.1% dissociation)

Acid/Base Titration

- 1. Define **buffered solution**:
- 2. What is a **titration**?
- 3. Define endpoint:
- 4. Define equivalence point:
- 5. Define indicator:
- 6. Define standard solution:

7. Sketch titration curves for each combination of strong and weak acids:

8. Sketch a titration curve for a diprotic acid:

9. If it takes 54 mL of 0.1M NaOH to neutralize 125mL of an HCl solution, what is the concentration of the HCl?

10. What is the molar concentration of a 50.0mL solution of NaOH that is titrated to an endpoint with 15.0mL of a 0.00300M solution of H_2SO_4 ?