Acids and Bases

MCHUMOR.cem by T. MeCracken

"I don't understand why they make such a big deal about acid rain.
Can't we just counteract it with alkaline rain?*
G1 Whandken mahumancom

Name

Test Date

\qquad
$\mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad
$\mathrm{H}_{2} \mathrm{SO}_{3}$ $\mathrm{Cu}(\mathrm{OH})_{2}$
$\mathrm{H}_{2} \mathrm{~S}$ \qquad $\mathrm{NH}_{4} \mathrm{OH}$ \qquad

Acids
Definition:

Properties:
1)
5)
2)
6)
3)
7)
4)

Bases:
Definition:
Properties:
1)
5)
2)
6)
3)
4)

Indicators

Define Indicator:

Type	Acid	Neutral	Base

Strength vs Concentration: Concentration:

Strength:

Strong Acids/Bases vs Weak Acids/Bases as electrolytes Using the pictures below show how a strong acid or base would differ from a weak acid or base when conducting electricity.

Why does this happen? \qquad
\qquad
\qquad
YOU MUST MEMORIZE STRONG/WEAK ACIDS AND BASES!

Strong Acids	Weak Acids

Strong Bases	Weak Bases

Organic Acids:

Are organic acids weak or strong?

What do the [] mean?

Relationships between acids and bases Neutral:

Acidic:

Basic:

pH Scale:

pOH Scale:

A change in $\left[\mathrm{H}^{+}\right]$by a factor of 10 causes the pH to change by \qquad .

A solution with a pH of 6 has \qquad the $\left[\mathrm{H}^{+}\right]$as a solution with a pH of 7 .

What is the difference in $\left[\mathrm{H}^{+}\right]$between a pH of 1 and pH of 4 ?
$\mathrm{pH} / \mathrm{pOH}$ calculation Formulas:

1	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	4	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
2	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$	5	$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pH}}$
3	$\mathrm{pH}+\mathrm{pOH}=14$	6	$\mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Try It: Calculate the pH
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-3} \mathrm{M}$
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.59 \times 10^{-10} \mathrm{M}$
c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.01 \times 10^{-6} \mathrm{M}$

Try it: Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
a) $\mathrm{pH}=3$
b) $\mathrm{pH}=6.61$
c) $\mathrm{pH}=2.52$

Try it: Find the pH
a) $\mathrm{pOH}=2$
b) $\mathrm{pOH}=1.26$
c) $\mathrm{pOH}=4.98$

Try it: Find the pH
a) $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-11} \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right]=2.64 \times 10^{-13} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=3.45 \times 10^{-8} \mathrm{M}$

Try it: Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
a) $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-6} \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right]=4.97 \times 10^{-10} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=2.93 \times 10^{-2} \mathrm{M}$

Try it: Find the pH
a) 0.054 M HCl
b) 0.178 M NaOH

Types of Acids and Bases

	Acid	Base Arrhenius
Bronsted- Lowery		

Neutralization Reactions (Using the Arrhenius Definition) Generic Equation:

Define salt:

1) Sodium hydroxide and hydrochloric acid
2) Calcium hydroxide and sulfuric acid
3) Potassium hydroxide and nitric acid

Vocabulary to know!

Term	Definition	Example(s)
Monoprotic		
Polyprotic		
Amphoteric		

Titrations:

Formula:

Terms to know:

Term	Definition
Acid Base Titration	
End Point	
Equivalence Point	
Indicator	
Standard Solution	

Examples:

1) If it takes 54 mL of 0.1 M NaOH to neutralize 125 mL of an HCl solution, what is the concentration of the HCl ?
2) If it takes 25 mL of 0.05 M HCl to neutralize 345 mL of NaOH solution, what is the concentration of NaOH solution?

Titration Curves: ID the type \& the pH at the equivalence point.

