Acids and Bases

"I don't understand why they make such a big deal about acid rain. Can't we just counteract it with alkaline rain?"

Name

Test Date

Nomenclature Review		
HCl	NaOH	
H_2SO_4	Ca(OH) ₂	
H ₂ SO ₃	Cu(OH) ₂	
H_2S		
Acids Definition:		
Properties:		
1)	5)	
2)	6)	
3)	7)	
4)		
Bases: Definition:		
Properties:		
1)	5)	
2)	6)	
3)	,	
4)		
Indicators		

Define Indicator:

Type	Acid	Neutral	Base
	_	_	

Strength vs Concentration:
Concentration:

Strength:

Strong Acids/Bases vs Weak Acids/Bases as electrolytes
Using the pictures below show how a strong acid or base would differ
from a weak acid or base when conducting electricity.

Strong acid or base	Weak acid or base
y does this happen?	

YOU MUST MEMORIZE STRONG/WEAK ACIDS AND BASES!

Strong Acids	Weak Acids	Strong Bases	Weak Bases

Organic Acids:

Are organic acids weak or strong?

Ionization of Water Ionization Equation:
Ionization Formula:
What do the [] mean?
Relationships between acids and bases Neutral:
Acidic:
Basic:
pH Scale:
pOH Scale:
A change in [H ⁺] by a factor of 10 causes the pH to change by
A solution with a pH of 6 has the $[H^+]$ as a solution with a pH of 7.
What is the difference in [H ⁺] between a pH of 1 and pH of 4?

pH/pOH calculation Formulas:

1	$pH = -log[H_3O^+]$	4	$pOH = -log[OH^{-}]$
2	$[H_3O^+] = 10^{-pH}$	5	$[OH^{-}] = 10^{-pH}$
3	pH + pOH = 14	6	$K_{w} = [H_{3}O^{+}][OH^{-}]$

Try It: Calculate the pH

- a) $[H_3O^+] = 1.00 \times 10^{-3}M$
- b) $[H_3O^+] = 6.59 \times 10^{-10}M$
- c) $[H_3O^+] = 7.01 \times 10^{-6}M$

Try it: Find the $[H_3O^+]$

- a) pH = 3
- b) pH = 6.61
- c) pH = 2.52

Try it: Find the pH

- a) pOH = 2
 - b) pOH = 1.26
 - c) pOH = 4.98

Try it: Find the pH

- a) $[OH^-] = 1.00 \times 10^{-11} M$
- b) $[OH^{-}] = 2.64 \times 10^{-13} M$
- c) $[OH^{-}] = 3.45 \times 10^{-8} M$

Try it: Find the
$$[H_3O^+]$$

a) $[OH^-] = 1.00 \times 10^{-6}M$

b)
$$[OH^{-}] = 4.97 \times 10^{-10} M$$

c)
$$[OH^{-}] = 2.93 \times 10^{-2}M$$

Try it: Find the pH a) 0.054M HCl

b) 0.178M NaOH

Types of Acids and Bases

	Acid	Base
Arrhenius		
Bronsted- Lowery		

Neutralization Reactions (Using the Arrhenius Definition) Generic Equation:

Define salt:

- 1) Sodium hydroxide and hydrochloric acid
- 2) Calcium hydroxide and sulfuric acid
- 3) Potassium hydroxide and nitric acid

Vocabulary to know!

Term	Definition	Example(s)
Monoprotic		
Polyprotic		
Amphoteric		

Titrations:

Formula:

Terms to know:

Term	Definition
Acid Base Titration	
End Point	
Equivalence Point	
Indicator	
Standard Solution	

Examples:

- 1) If it takes 54mL of 0.1M NaOH to neutralize 125mL of an HCl solution, what is the concentration of the HCl?
- 2) If it takes 25mL of 0.05M HCl to neutralize 345mL of NaOH solution, what is the concentration of NaOH solution?

Titration Curves: ID the type & the pH at the equivalence point.

