Directions: Show all work for each problem below.

1) Gram Formula Mass

Determine the gram formula mass (mass of one mole) of each compound below.
KMnO_{4} \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ \qquad
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ \qquad

$$
\mathrm{CuSO}_{4} * 5 \mathrm{H}_{2} \mathrm{O}
$$

\qquad
2) Percent Composition

Determine the percent composition for each of the following compounds.
a) NaBr
\%Na:
\%Br:
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
\%H:
\%O:
c) $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2} * 2 \mathrm{H}_{2} \mathrm{O}$
\%Ba:
\%P:
$\%$ O:
$\% \mathrm{H}_{2} \mathrm{O}$:
3. Mole Conversions
a) 25 g of $\mathrm{NaCl}=$ \qquad moles
d) 1.5 moles of $\mathrm{CaSO}_{4}=$ formula units
b) 0.50 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ \qquad g
e) 1.204×10^{24} atoms of $\mathrm{Sr}=$ \qquad moles
c) 3.2 moles of $\mathrm{O}_{2}=$ \qquad L
f) 1.5×10^{20} molecules of $\mathrm{CO}_{2(\mathrm{~g})} @ \mathrm{STP}=$ \xrightarrow{L}
g) How many grams are there in 1.5×10^{25} molecules of CO_{2} ?
h) How many moles are there in 1.35 Liters of CO_{2} ? \qquad mole
4. Empirical Formulas
a) 22.1% aluminum, 25.4% phosphorus, and 52.5% oxygen:
b) 13% magnesium and 87% bromine:

5.Molecular Formulas

a) The empirical formula of a compound is NO_{2}. Its molecular mass in $230 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
b) The empirical formula of a compound is CH_{2}. Its molecular mass is $70 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?
a) Determine the moles of lithium hydroxide produced when 0.38 moles of lithium nitride react with water according to the following equation: $\mathbf{L i}_{\mathbf{3}} \mathbf{N}+\mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{O} \rightarrow \mathbf{N H} \mathbf{3}+\mathbf{3} \mathbf{L i O H}$
b) How many moles of sodium chloride are produced when chlorine reacts with 0.29 g of sodium iodide? (Hint: Write out the equation and balance it first!)
c) Find the moles of $\operatorname{sugar}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ required to produce 1.82 L of carbon dioxide gas at STP from the reaction described by the following equation: $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}} \rightarrow \mathbf{2} \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}} \mathrm{O}+2 \mathbf{C O}_{\mathbf{2}}$
d) Determine the mass of antimony produced when 0.46 g of antimony (III) oxide reacts with carbon according to the following equation: $\mathbf{S b}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}+3 \mathbf{C} \rightarrow 2 \mathbf{S b}+\mathbf{C O}$
e) Find the mass of sodium required to produce 5.68 L of hydrogen gas at STP from the reaction describe by the following equation: $2 \mathrm{Na}+2 \mathbf{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathbf{H}_{2}$.
f) How many liters of oxygen are necessary for the combustion of 277 g of carbon monoxide, assuming that the reaction occurs at STP? The balanced equation is: $\mathbf{2 C O}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2 C O} \mathbf{2}$.
g) Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ burns in oxygen to produce carbon dioxide and water vapor as describe in the following equation: $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathrm{O}_{\mathbf{6}}+\mathbf{6} \mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{6} \mathbf{H}_{\mathbf{2}} \mathrm{O}+\mathbf{6} \mathrm{CO}_{\mathbf{2}}$. What volume of carbon dioxide is produced when 3.7 L of oxygen are consumed?

