Moles and Stoich Test Review Sheet

Name _____

1) Gram Formula Mass

Determine the gram formula mass (mass of one mole) of each compound below.

KMnO4				Al ₂ (SO ₄) ₃		_
Na2SO4				CuSO ₄ *5H ₂ 0		
 2) Percent Composition Determine the percent composition for each of the following compounds. a) NaBr %Na: %Br: 						
b) H 2 O 2	%Н:		%0:			
c) Ba ₃ (PO ₄) ₂ * 2H ₂	0	⁰∕₀Ba:		%P:	%O:	%H2O:
3. Mole Conversions a) 25 g of NaCl = moles d) 1.5 moles of CaSO ₄ = formula units						
b) 0.50 moles of H ₂ SO ₄	. =	g		e)1.204 x moles	10 ²⁴ atoms of	Sr =
c) 3.2 moles of $O_2 =$		_L				

- f) $1.5 \ge 10^{20}$ molecules of $CO_{2(g)}$ @ STP = _____L
- g) How many grams are there in 1.5 x 10²⁵ molecules of CO₂?

4. Empirical Formulas

- a) 22.1% aluminum, 25.4% phosphorus, and 52.5% oxygen:
- b) 13% magnesium and 87% bromine:

5.Molecular Formulas

- a) The empirical formula of a compound is NO₂. Its molecular mass in 230 g/mol. What is its molecular formula?
- b) The empirical formula of a compound is CH₂. Its molecular mass is 70 g/mol. What is its molecular formula?

h) How many moles are there in 1.35 Liters of CO₂? _____mole 6) Stoichiometry Practice

a) Determine the moles of lithium hydroxide produced when 0.38 moles of lithium nitride react with water according to the following equation: $Li_3N + 3H_2O \rightarrow NH_3 + 3LiOH$

b) How many moles of sodium chloride are produced when chlorine reacts with 0.29 g of sodium iodide? (Hint: Write out the equation and balance it first!)

c) Find the moles of sugar (C₆H₁₂O₆) required to produce 1.82 L of carbon dioxide gas at STP from the reaction described by the following equation: $C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$

d) Determine the mass of antimony produced when 0.46 g of antimony (III) oxide reacts with carbon according to the following equation: $Sb_2O_3 + 3C \rightarrow 2Sb + CO$

e) Find the mass of sodium required to produce 5.68 L of hydrogen gas at STP from the reaction describe by the following equation: $2Na + 2H_2O \rightarrow 2NaOH + H_2$.

f) How many liters of oxygen are necessary for the combustion of 277 g of carbon monoxide, assuming that the reaction occurs at STP? The balanced equation is: $2CO + O_2 \rightarrow 2CO_2$.

g) Glucose (C₆H₁₂O₆) burns in oxygen to produce carbon dioxide and water vapor as describe in the following equation: $C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2$. What volume of carbon dioxide is produced when 3.7 L of oxygen are consumed?